Peter
Abstract:Predicting future motions of road participants is an important task for driving autonomously. Most existing models excel at predicting the marginal trajectory of a single agent, but predicting joint trajectories for multiple agents that are consistent within a scene remains a challenge. Previous research has often focused on marginal predictions, but the importance of joint predictions has become increasingly apparent. Joint prediction aims to generate trajectories that are consistent across the entire scene. Our research builds upon the SIMPL baseline to explore methods for generating scene-consistent trajectories. We tested our algorithm on the Argoverse 2 dataset, and experimental results demonstrate that our approach can generate scene-consistent trajectories. Compared to the SIMPL baseline, our method significantly reduces the collision rate of joint trajectories within the scene.
Abstract:In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
Abstract:The Norman Conquest of 1066 C.E. brought profound transformations to England's administrative, societal, and linguistic practices. The DEEDS (Documents of Early England Data Set) database offers a unique opportunity to explore these changes by examining shifts in word meanings within a vast collection of Medieval Latin charters. While computational linguistics typically relies on vector representations of words like static and contextual embeddings to analyze semantic changes, existing embeddings for scarce and historical Medieval Latin are limited and may not be well-suited for this task. This paper presents the first computational analysis of semantic change pre- and post-Norman Conquest and the first systematic comparison of static and contextual embeddings in a scarce historical data set. Our findings confirm that, consistent with existing studies, contextual embeddings outperform static word embeddings in capturing semantic change within a scarce historical corpus.
Abstract:This work presents an interpretable decision-making framework for autonomous vehicles that integrates traffic regulations, norms, and safety guidelines comprehensively and enables seamless adaptation to different regions. While traditional rule-based methods struggle to incorporate the full scope of traffic rules, we develop a Traffic Regulation Retrieval (TRR) Agent based on Retrieval-Augmented Generation (RAG) to automatically retrieve relevant traffic rules and guidelines from extensive regulation documents and relevant records based on the ego vehicle's situation. Given the semantic complexity of the retrieved rules, we also design a reasoning module powered by a Large Language Model (LLM) to interpret these rules, differentiate between mandatory rules and safety guidelines, and assess actions on legal compliance and safety. Additionally, the reasoning is designed to be interpretable, enhancing both transparency and reliability. The framework demonstrates robust performance on both hypothesized and real-world cases across diverse scenarios, along with the ability to adapt to different regions with ease.
Abstract:Understanding human mobility patterns is crucial for urban planning, transportation management, and public health. This study tackles two primary challenges in the field: the reliance on trajectory data, which often fails to capture the semantic interdependencies of activities, and the inherent incompleteness of real-world trajectory data. We have developed a model that reconstructs and learns human mobility patterns by focusing on semantic activity chains. We introduce a semi-supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts and address data scarcity. Our model is validated using comprehensive datasets from the United States, where it effectively reconstructs activity chains and generates high-quality synthetic mobility data, achieving a low Jensen-Shannon Divergence (JSD) value of 0.001, indicating a close similarity between synthetic and real data. Additionally, sparse GPS data from Egypt is used to evaluate the transfer learning algorithm, demonstrating successful adaptation of US mobility patterns to Egyptian contexts, achieving a 64\% of increase in similarity, i.e., a JSD reduction from 0.09 to 0.03. This mobility reconstruction model and the associated transfer learning algorithm show significant potential for global human mobility modeling studies, enabling policymakers and researchers to design more effective and culturally tailored transportation solutions.
Abstract:In Query-driven Travel Recommender Systems (RSs), it is crucial to understand the user intent behind challenging natural language(NL) destination queries such as the broadly worded "youth-friendly activities" or the indirect description "a high school graduation trip". Such queries are challenging due to the wide scope and subtlety of potential user intents that confound the ability of retrieval methods to infer relevant destinations from available textual descriptions such as WikiVoyage. While query reformulation (QR) has proven effective in enhancing retrieval by addressing user intent, existing QR methods tend to focus only on expanding the range of potentially matching query subtopics (breadth) or elaborating on the potential meaning of a query (depth), but not both. In this paper, we introduce Elaborative Subtopic Query Reformulation (EQR), a large language model-based QR method that combines both breadth and depth by generating potential query subtopics with information-rich elaborations. We also release TravelDest, a novel dataset for query-driven travel destination RSs. Experiments on TravelDest show that EQR achieves significant improvements in recall and precision over existing state-of-the-art QR methods.
Abstract:Understanding human mobility patterns has traditionally been a complex challenge in transportation modeling. Due to the difficulties in obtaining high-quality training datasets across diverse locations, conventional activity-based models and learning-based human mobility modeling algorithms are particularly limited by the availability and quality of datasets. Furthermore, current research mainly focuses on the spatial-temporal travel pattern but lacks an understanding of the semantic information between activities, which is crucial for modeling the interdependence between activities. In this paper, we propose an innovative Large Language Model (LLM) empowered human mobility modeling framework. Our proposed approach significantly reduces the reliance on detailed human mobility statistical data, utilizing basic socio-demographic information of individuals to generate their daily mobility patterns. We have validated our results using the NHTS and SCAG-ABM datasets, demonstrating the effective modeling of mobility patterns and the strong adaptability of our framework across various geographic locations.
Abstract:Robot navigation is an important research field with applications in various domains. However, traditional approaches often prioritize efficiency and obstacle avoidance, neglecting a nuanced understanding of human behavior or intent in shared spaces. With the rise of service robots, there's an increasing emphasis on endowing robots with the capability to navigate and interact in complex real-world environments. Socially aware navigation has recently become a key research area. However, existing work either predicts pedestrian movements or simply emits alert signals to pedestrians, falling short of facilitating genuine interactions between humans and robots. In this paper, we introduce the Hybrid Soft Actor-Critic with Large Language Model (HSAC-LLM), an innovative model designed for socially-aware navigation in robots. This model seamlessly integrates deep reinforcement learning with large language models, enabling it to predict both continuous and discrete actions for navigation. Notably, HSAC-LLM facilitates bidirectional interaction based on natural language with pedestrian models. When a potential collision with pedestrians is detected, the robot can initiate or respond to communications with pedestrians, obtaining and executing subsequent avoidance strategies. Experimental results in 2D simulation, the Gazebo environment, and the real-world environment demonstrate that HSAC-LLM not only efficiently enables interaction with humans but also exhibits superior performance in navigation and obstacle avoidance compared to state-of-the-art DRL algorithms. We believe this innovative paradigm opens up new avenues for effective and socially aware human-robot interactions in dynamic environments. Videos are available at https://hsacllm.github.io/.
Abstract:Tooth point cloud segmentation is a fundamental task in many orthodontic applications. Current research mainly focuses on fully supervised learning which demands expensive and tedious manual point-wise annotation. Although recent weakly-supervised alternatives are proposed to use weak labels for 3D segmentation and achieve promising results, they tend to fail when the labels are extremely sparse. Inspired by the powerful promptable segmentation capability of the Segment Anything Model (SAM), we propose a framework named SAMTooth that leverages such capacity to complement the extremely sparse supervision. To automatically generate appropriate point prompts for SAM, we propose a novel Confidence-aware Prompt Generation strategy, where coarse category predictions are aggregated with confidence-aware filtering. Furthermore, to fully exploit the structural and shape clues in SAM's outputs for assisting the 3D feature learning, we advance a Mask-guided Representation Learning that re-projects the generated tooth masks of SAM into 3D space and constrains these points of different teeth to possess distinguished representations. To demonstrate the effectiveness of the framework, we conduct experiments on the public dataset and surprisingly find with only 0.1\% annotations (one point per tooth), our method can surpass recent weakly supervised methods by a large margin, and the performance is even comparable to the recent fully-supervised methods, showcasing the significant potential of applying SAM to 3D perception tasks with sparse labels. Code is available at https://github.com/CUHK-AIM-Group/SAMTooth.
Abstract:Media bias significantly shapes public perception by reinforcing stereotypes and exacerbating societal divisions. Prior research has often focused on isolated media bias dimensions such as \textit{political bias} or \textit{racial bias}, neglecting the complex interrelationships among various bias dimensions across different topic domains. Moreover, we observe that models trained on existing media bias benchmarks fail to generalize effectively on recent social media posts, particularly in certain bias identification tasks. This shortfall primarily arises because these benchmarks do not adequately reflect the rapidly evolving nature of social media content, which is characterized by shifting user behaviors and emerging trends. In response to these limitations, our research introduces a novel dataset collected from YouTube and Reddit over the past five years. Our dataset includes automated annotations for YouTube content across a broad spectrum of bias dimensions, such as gender, racial, and political biases, as well as hate speech, among others. It spans diverse domains including politics, sports, healthcare, education, and entertainment, reflecting the complex interplay of biases across different societal sectors. Through comprehensive statistical analysis, we identify significant differences in bias expression patterns and intra-domain bias correlations across these domains. By utilizing our understanding of the correlations among various bias dimensions, we lay the groundwork for creating advanced systems capable of detecting multiple biases simultaneously. Overall, our dataset advances the field of media bias identification, contributing to the development of tools that promote fairer media consumption. The comprehensive awareness of existing media bias fosters more ethical journalism, promotes cultural sensitivity, and supports a more informed and equitable public discourse.