Abstract:High-energy large-scale particle colliders generate data at extraordinary rates. Developing real-time high-throughput data compression algorithms to reduce data volume and meet the bandwidth requirement for storage has become increasingly critical. Deep learning is a promising technology that can address this challenging topic. At the newly constructed sPHENIX experiment at the Relativistic Heavy Ion Collider, a Time Projection Chamber (TPC) serves as the main tracking detector, which records three-dimensional particle trajectories in a volume of a gas-filled cylinder. In terms of occupancy, the resulting data flow can be very sparse reaching $10^{-3}$ for proton-proton collisions. Such sparsity presents a challenge to conventional learning-free lossy compression algorithms, such as SZ, ZFP, and MGARD. In contrast, emerging deep learning-based models, particularly those utilizing convolutional neural networks for compression, have outperformed these conventional methods in terms of compression ratios and reconstruction accuracy. However, research on the efficacy of these deep learning models in handling sparse datasets, like those produced in particle colliders, remains limited. Furthermore, most deep learning models do not adapt their processing speeds to data sparsity, which affects efficiency. To address this issue, we propose a novel approach for TPC data compression via key-point identification facilitated by sparse convolution. Our proposed algorithm, BCAE-VS, achieves a $75\%$ improvement in reconstruction accuracy with a $10\%$ increase in compression ratio over the previous state-of-the-art model. Additionally, BCAE-VS manages to achieve these results with a model size over two orders of magnitude smaller. Lastly, we have experimentally verified that as sparsity increases, so does the model's throughput.
Abstract:While working within the spatial domain can pose problems associated with ill-conditioned scores caused by power-law decay, recent advances in diffusion-based generative models have shown that transitioning to the wavelet domain offers a promising alternative. However, within the wavelet domain, we encounter unique challenges, especially the sparse representation of high-frequency coefficients, which deviates significantly from the Gaussian assumptions in the diffusion process. To this end, we propose a multi-scale generative modeling in the wavelet domain that employs distinct strategies for handling low and high-frequency bands. In the wavelet domain, we apply score-based generative modeling with well-conditioned scores for low-frequency bands, while utilizing a multi-scale generative adversarial learning for high-frequency bands. As supported by the theoretical analysis and experimental results, our model significantly improve performance and reduce the number of trainable parameters, sampling steps, and time.
Abstract:Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution, however, these systems have various applicability issues such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present MobileAF, a novel smartphone-based AF detection system using speakers and microphones. In order to capture minute cardiac activities, we propose a multi-channel pulse wave probing method. In addition, we enhance the signal quality by introducing a three-stage pulse wave purification pipeline. What's more, a ResNet-based network model is built to implement accurate and reliable AF detection. We collect data from 23 participants utilizing our data collection application on the smartphone. Extensive experimental results demonstrate the superior performance of our system, with 97.9% accuracy, 96.8% precision, 97.2% recall, 98.3% specificity, and 97.0% F1 score.
Abstract:The traditional image inpainting task aims to restore corrupted regions by referencing surrounding background and foreground. However, the object erasure task, which is in increasing demand, aims to erase objects and generate harmonious background. Previous GAN-based inpainting methods struggle with intricate texture generation. Emerging diffusion model-based algorithms, such as Stable Diffusion Inpainting, exhibit the capability to generate novel content, but they often produce incongruent results at the locations of the erased objects and require high-quality text prompt inputs. To address these challenges, we introduce MagicEraser, a diffusion model-based framework tailored for the object erasure task. It consists of two phases: content initialization and controllable generation. In the latter phase, we develop two plug-and-play modules called prompt tuning and semantics-aware attention refocus. Additionally, we propose a data construction strategy that generates training data specially suitable for this task. MagicEraser achieves fine and effective control of content generation while mitigating undesired artifacts. Experimental results highlight a valuable advancement of our approach in the object erasure task.
Abstract:Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question's semantics. To address them, we propose a novel rewriting method CoTKR, Chain-of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.
Abstract:Availability poisons exploit supervised learning (SL) algorithms by introducing class-related shortcut features in images such that models trained on poisoned data are useless for real-world datasets. Self-supervised learning (SSL), which utilizes augmentations to learn instance discrimination, is regarded as a strong defense against poisoned data. However, by extending the study of SSL across multiple poisons on the CIFAR-10 and ImageNet-100 datasets, we demonstrate that it often performs poorly, far below that of training on clean data. Leveraging the vulnerability of SL to poison attacks, we introduce adversarial training (AT) on SL to obfuscate poison features and guide robust feature learning for SSL. Our proposed defense, designated VESPR (Vulnerability Exploitation of Supervised Poisoning for Robust SSL), surpasses the performance of six previous defenses across seven popular availability poisons. VESPR displays superior performance over all previous defenses, boosting the minimum and average ImageNet-100 test accuracies of poisoned models by 16% and 9%, respectively. Through analysis and ablation studies, we elucidate the mechanisms by which VESPR learns robust class features.
Abstract:Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution. However, these systems have various applicability issues, such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present AcousAF, a novel AF detection system based on acoustic sensors of smartphones. Particularly, we explore the potential of pulse wave acquisition from the wrist using smartphone speakers and microphones. In addition, we propose a well-designed framework comprised of pulse wave probing, pulse wave extraction, and AF detection to ensure accurate and reliable AF detection. We collect data from 20 participants utilizing our custom data collection application on the smartphone. Extensive experimental results demonstrate the high performance of our system, with 92.8% accuracy, 86.9% precision, 87.4% recall, and 87.1% F1 Score.
Abstract:Diffusion models have made significant strides in language-driven and layout-driven image generation. However, most diffusion models are limited to visible RGB image generation. In fact, human perception of the world is enriched by diverse viewpoints, including chromatic contrast, thermal illumination, and depth information. In this paper, we introduce a novel diffusion model for general layout-guided cross-modal ``RGB+X'' generation, called DiffX. Firstly, we construct the cross-modal image datasets with text description by using LLaVA for image captioning, supplemented by manual corrections. Notably, DiffX presents a simple yet effective cross-modal generative modeling pipeline, which conducts diffusion and denoising processes in the modality-shared latent space, facilitated by our Dual Path Variational AutoEncoder (DP-VAE). Moreover, we introduce the joint-modality embedder, which incorporates a gated cross-attention mechanism to link layout and text conditions. Meanwhile, the advanced Long-CLIP is employed for long caption embedding to improve user guidance. Through extensive experiments, DiffX demonstrates robustness and flexibility in cross-modal generation across three RGB+X datasets: FLIR, MFNet, and COME15K, guided by various layout types. It also shows the potential for adaptive generation of ``RGB+X+Y'' or more diverse modalities. Our code and constructed cross-modal image datasets are available at https://github.com/zeyuwang-zju/DiffX.
Abstract:The advance of diffusion-based generative models in recent years has revolutionized state-of-the-art (SOTA) techniques in a wide variety of image analysis and synthesis tasks, whereas their adaptation on image restoration, particularly within computational microscopy remains theoretically and empirically underexplored. In this research, we introduce a multi-scale generative model that enhances conditional image restoration through a novel exploitation of the Brownian Bridge process within wavelet domain. By initiating the Brownian Bridge diffusion process specifically at the lowest-frequency subband and applying generative adversarial networks at subsequent multi-scale high-frequency subbands in the wavelet domain, our method provides significant acceleration during training and sampling while sustaining a high image generation quality and diversity on par with SOTA diffusion models. Experimental results on various computational microscopy and imaging tasks confirm our method's robust performance and its considerable reduction in its sampling steps and time. This pioneering technique offers an efficient image restoration framework that harmonizes efficiency with quality, signifying a major stride in incorporating cutting-edge generative models into computational microscopy workflows.
Abstract:Cardiac magnetic resonance imaging (MRI) is a pivotal tool for assessing cardiac function. Precise segmentation of cardiac structures is imperative for accurate cardiac functional evaluation. This paper introduces a semi-supervised model for automatic segmentation of cardiac images and auxiliary diagnosis. By harnessing cardiac MRI images and necessitating only a small portion of annotated image data, the model achieves fully automated, high-precision segmentation of cardiac images, extraction of features, calculation of clinical indices, and prediction of diseases. The provided segmentation results, clinical indices, and prediction outcomes can aid physicians in diagnosis, thereby serving as auxiliary diagnostic tools. Experimental results showcase that this semi-supervised model for automatic segmentation of cardiac images and auxiliary diagnosis attains high accuracy in segmentation and correctness in prediction, demonstrating substantial practical guidance and application value.