Abstract:In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in data analytics when integrated with Multi-Agent Systems (MAS). However, these systems often struggle with complex tasks that involve diverse functional requirements and intricate data processing challenges, necessitating customized solutions that lack broad applicability. Furthermore, current MAS fail to emulate essential human-like traits such as self-planning, self-monitoring, and collaborative work in dynamic environments, leading to inefficiencies and resource wastage. To address these limitations, we propose ROMAS, a novel Role-Based M ulti-A gent System designed to adapt to various scenarios while enabling low code development and one-click deployment. ROMAS has been effectively deployed in DB-GPT [Xue et al., 2023a, 2024b], a well-known project utilizing LLM-powered database analytics, showcasing its practical utility in real-world scenarios. By integrating role-based collaborative mechanisms for self-monitoring and self-planning, and leveraging existing MAS capabilities to enhance database interactions, ROMAS offers a more effective and versatile solution. Experimental evaluations of ROMAS demonstrate its superiority across multiple scenarios, highlighting its potential to advance the field of multi-agent data analytics.
Abstract:Text-conditional image editing is a practical AIGC task that has recently emerged with great commercial and academic value. For real image editing, most diffusion model-based methods use DDIM Inversion as the first stage before editing. However, DDIM Inversion often results in reconstruction failure, leading to unsatisfactory performance for downstream editing. To address this problem, we first analyze why the reconstruction via DDIM Inversion fails. We then propose a new inversion and sampling method named Dual-Schedule Inversion. We also design a classifier to adaptively combine Dual-Schedule Inversion with different editing methods for user-friendly image editing. Our work can achieve superior reconstruction and editing performance with the following advantages: 1) It can reconstruct real images perfectly without fine-tuning, and its reversibility is guaranteed mathematically. 2) The edited object/scene conforms to the semantics of the text prompt. 3) The unedited parts of the object/scene retain the original identity.
Abstract:Role-playing is a crucial capability of Large Language Models (LLMs), enabling a wide range of practical applications, including intelligent non-player characters, digital twins, and emotional companions. Evaluating this capability in LLMs is challenging due to the complex dynamics involved in role-playing, such as maintaining character fidelity throughout a storyline and navigating open-ended narratives without a definitive ground truth. Current evaluation methods, which primarily focus on question-answering or conversational snapshots, fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing. In this paper, we propose CharacterBox, which is a simulation sandbox designed to generate situational fine-grained character behavior trajectories. These behavior trajectories enable a more comprehensive and in-depth evaluation of role-playing capabilities. CharacterBox consists of two main components: the character agent and the narrator agent. The character agent, grounded in psychological and behavioral science, exhibits human-like behaviors, while the narrator agent coordinates interactions between character agents and environmental changes. Additionally, we introduce two trajectory-based methods that leverage CharacterBox to enhance LLM performance. To reduce costs and facilitate the adoption of CharacterBox by public communities, we fine-tune two smaller models, CharacterNR and CharacterRM, as substitutes for GPT API calls, and demonstrate their competitive performance compared to advanced GPT APIs.
Abstract:Building on the success of diffusion models in image generation and editing, video editing has recently gained substantial attention. However, maintaining temporal consistency and motion alignment still remains challenging. To address these issues, this paper proposes DINO-guided Video Editing (DIVE), a framework designed to facilitate subject-driven editing in source videos conditioned on either target text prompts or reference images with specific identities. The core of DIVE lies in leveraging the powerful semantic features extracted from a pretrained DINOv2 model as implicit correspondences to guide the editing process. Specifically, to ensure temporal motion consistency, DIVE employs DINO features to align with the motion trajectory of the source video. Extensive experiments on diverse real-world videos demonstrate that our framework can achieve high-quality editing results with robust motion consistency, highlighting the potential of DINO to contribute to video editing. For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model to learn Low-Rank Adaptations (LoRAs), effectively registering the target subject's identity. Project page: https://dino-video-editing.github.io
Abstract:High-energy, large-scale particle colliders in nuclear and high-energy physics generate data at extraordinary rates, reaching up to $1$ terabyte and several petabytes per second, respectively. The development of real-time, high-throughput data compression algorithms capable of reducing this data to manageable sizes for permanent storage is of paramount importance. A unique characteristic of the tracking detector data is the extreme sparsity of particle trajectories in space, with an occupancy rate ranging from approximately $10^{-6}$ to $10\%$. Furthermore, for downstream tasks, a continuous representation of this data is often more useful than a voxel-based, discrete representation due to the inherently continuous nature of the signals involved. To address these challenges, we propose a novel approach using implicit neural representations for data learning and compression. We also introduce an importance sampling technique to accelerate the network training process. Our method is competitive with traditional compression algorithms, such as MGARD, SZ, and ZFP, while offering significant speed-ups and maintaining negligible accuracy loss through our importance sampling strategy.
Abstract:High-energy large-scale particle colliders generate data at extraordinary rates. Developing real-time high-throughput data compression algorithms to reduce data volume and meet the bandwidth requirement for storage has become increasingly critical. Deep learning is a promising technology that can address this challenging topic. At the newly constructed sPHENIX experiment at the Relativistic Heavy Ion Collider, a Time Projection Chamber (TPC) serves as the main tracking detector, which records three-dimensional particle trajectories in a volume of a gas-filled cylinder. In terms of occupancy, the resulting data flow can be very sparse reaching $10^{-3}$ for proton-proton collisions. Such sparsity presents a challenge to conventional learning-free lossy compression algorithms, such as SZ, ZFP, and MGARD. In contrast, emerging deep learning-based models, particularly those utilizing convolutional neural networks for compression, have outperformed these conventional methods in terms of compression ratios and reconstruction accuracy. However, research on the efficacy of these deep learning models in handling sparse datasets, like those produced in particle colliders, remains limited. Furthermore, most deep learning models do not adapt their processing speeds to data sparsity, which affects efficiency. To address this issue, we propose a novel approach for TPC data compression via key-point identification facilitated by sparse convolution. Our proposed algorithm, BCAE-VS, achieves a $75\%$ improvement in reconstruction accuracy with a $10\%$ increase in compression ratio over the previous state-of-the-art model. Additionally, BCAE-VS manages to achieve these results with a model size over two orders of magnitude smaller. Lastly, we have experimentally verified that as sparsity increases, so does the model's throughput.
Abstract:While working within the spatial domain can pose problems associated with ill-conditioned scores caused by power-law decay, recent advances in diffusion-based generative models have shown that transitioning to the wavelet domain offers a promising alternative. However, within the wavelet domain, we encounter unique challenges, especially the sparse representation of high-frequency coefficients, which deviates significantly from the Gaussian assumptions in the diffusion process. To this end, we propose a multi-scale generative modeling in the wavelet domain that employs distinct strategies for handling low and high-frequency bands. In the wavelet domain, we apply score-based generative modeling with well-conditioned scores for low-frequency bands, while utilizing a multi-scale generative adversarial learning for high-frequency bands. As supported by the theoretical analysis and experimental results, our model significantly improve performance and reduce the number of trainable parameters, sampling steps, and time.
Abstract:Atrial fibrillation (AF) is characterized by irregular electrical impulses originating in the atria, which can lead to severe complications and even death. Due to the intermittent nature of the AF, early and timely monitoring of AF is critical for patients to prevent further exacerbation of the condition. Although ambulatory ECG Holter monitors provide accurate monitoring, the high cost of these devices hinders their wider adoption. Current mobile-based AF detection systems offer a portable solution, however, these systems have various applicability issues such as being easily affected by environmental factors and requiring significant user effort. To overcome the above limitations, we present MobileAF, a novel smartphone-based AF detection system using speakers and microphones. In order to capture minute cardiac activities, we propose a multi-channel pulse wave probing method. In addition, we enhance the signal quality by introducing a three-stage pulse wave purification pipeline. What's more, a ResNet-based network model is built to implement accurate and reliable AF detection. We collect data from 23 participants utilizing our data collection application on the smartphone. Extensive experimental results demonstrate the superior performance of our system, with 97.9% accuracy, 96.8% precision, 97.2% recall, 98.3% specificity, and 97.0% F1 score.
Abstract:The traditional image inpainting task aims to restore corrupted regions by referencing surrounding background and foreground. However, the object erasure task, which is in increasing demand, aims to erase objects and generate harmonious background. Previous GAN-based inpainting methods struggle with intricate texture generation. Emerging diffusion model-based algorithms, such as Stable Diffusion Inpainting, exhibit the capability to generate novel content, but they often produce incongruent results at the locations of the erased objects and require high-quality text prompt inputs. To address these challenges, we introduce MagicEraser, a diffusion model-based framework tailored for the object erasure task. It consists of two phases: content initialization and controllable generation. In the latter phase, we develop two plug-and-play modules called prompt tuning and semantics-aware attention refocus. Additionally, we propose a data construction strategy that generates training data specially suitable for this task. MagicEraser achieves fine and effective control of content generation while mitigating undesired artifacts. Experimental results highlight a valuable advancement of our approach in the object erasure task.
Abstract:Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question's semantics. To address them, we propose a novel rewriting method CoTKR, Chain-of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.