Abstract:Histopathology plays a critical role in medical diagnostics, with whole slide images (WSIs) offering valuable insights that directly influence clinical decision-making. However, the large size and complexity of WSIs may pose significant challenges for deep learning models, in both computational efficiency and effective representation learning. In this work, we introduce Pixel-Mamba, a novel deep learning architecture designed to efficiently handle gigapixel WSIs. Pixel-Mamba leverages the Mamba module, a state-space model (SSM) with linear memory complexity, and incorporates local inductive biases through progressively expanding tokens, akin to convolutional neural networks. This enables Pixel-Mamba to hierarchically combine both local and global information while efficiently addressing computational challenges. Remarkably, Pixel-Mamba achieves or even surpasses the quantitative performance of state-of-the-art (SOTA) foundation models that were pretrained on millions of WSIs or WSI-text pairs, in a range of tumor staging and survival analysis tasks, {\bf even without requiring any pathology-specific pretraining}. Extensive experiments demonstrate the efficacy of Pixel-Mamba as a powerful and efficient framework for end-to-end WSI analysis.
Abstract:It is clinically crucial and potentially very beneficial to be able to analyze and model directly the spatial distributions of cells in histopathology whole slide images (WSI). However, most existing WSI datasets lack cell-level annotations, owing to the extremely high cost over giga-pixel images. Thus, it remains an open question whether deep learning models can directly and effectively analyze WSIs from the semantic aspect of cell distributions. In this work, we construct a large-scale WSI dataset with more than 5 billion cell-level annotations, termed WSI-Cell5B, and a novel hierarchical Cell Cloud Transformer (CCFormer) to tackle these challenges. WSI-Cell5B is based on 6,998 WSIs of 11 cancers from The Cancer Genome Atlas Program, and all WSIs are annotated per cell by coordinates and types. To the best of our knowledge, WSI-Cell5B is the first WSI-level large-scale dataset integrating cell-level annotations. On the other hand, CCFormer formulates the collection of cells in each WSI as a cell cloud and models cell spatial distribution. Specifically, Neighboring Information Embedding (NIE) is proposed to characterize the distribution of cells within the neighborhood of each cell, and a novel Hierarchical Spatial Perception (HSP) module is proposed to learn the spatial relationship among cells in a bottom-up manner. The clinical analysis indicates that WSI-Cell5B can be used to design clinical evaluation metrics based on counting cells that effectively assess the survival risk of patients. Extensive experiments on survival prediction and cancer staging show that learning from cell spatial distribution alone can already achieve state-of-the-art (SOTA) performance, i.e., CCFormer strongly outperforms other competing methods.
Abstract:Although semi-supervised learning has made significant advances in the field of medical image segmentation, fully annotating a volumetric sample slice by slice remains a costly and time-consuming task. Even worse, most of the existing approaches pay much attention to image-level information and ignore semantic features, resulting in the inability to perceive weak boundaries. To address these issues, we propose a novel Semantic-Guided Triplet Co-training (SGTC) framework, which achieves high-end medical image segmentation by only annotating three orthogonal slices of a few volumetric samples, significantly alleviating the burden of radiologists. Our method consist of two main components. Specifically, to enable semantic-aware, fine-granular segmentation and enhance the quality of pseudo-labels, a novel semantic-guided auxiliary learning mechanism is proposed based on the pretrained CLIP. In addition, focusing on a more challenging but clinically realistic scenario, a new triple-view disparity training strategy is proposed, which uses sparse annotations (i.e., only three labeled slices of a few volumes) to perform co-training between three sub-networks, significantly improving the robustness. Extensive experiments on three public medical datasets demonstrate that our method outperforms most state-of-the-art semi-supervised counterparts under sparse annotation settings. The source code is available at https://github.com/xmeimeimei/SGTC.
Abstract:This work analyses the disparity in performance between Decision Transformer (DT) and Decision Mamba (DM) in sequence modelling reinforcement learning tasks for different Atari games. The study first observed that DM generally outperformed DT in the games Breakout and Qbert, while DT performed better in more complicated games, such as Hero and Kung Fu Master. To understand these differences, we expanded the number of games to 12 and performed a comprehensive analysis of game characteristics, including action space complexity, visual complexity, average trajectory length, and average steps to the first non-zero reward. In order to further analyse the key factors that impact the disparity in performance between DT and DM, we employ various approaches, including quantifying visual complexity, random forest regression, correlation analysis, and action space simplification strategies. The results indicate that the performance gap between DT and DM is affected by the complex interaction of multiple factors, with the complexity of the action space and visual complexity (particularly evaluated by compression ratio) being the primary determining factors. DM performs well in environments with simple action and visual elements, while DT shows an advantage in games with higher action and visual complexity. Our findings contribute to a deeper understanding of how the game characteristics affect the performance difference in sequential modelling reinforcement learning, potentially guiding the development of future model design and applications for diverse and complex environments.
Abstract:Continual learning aims to incrementally acquire new concepts in data streams while resisting forgetting previous knowledge. With the rise of powerful pre-trained models (PTMs), there is a growing interest in training incremental learning systems using these foundation models, rather than learning from scratch. Existing works often view PTMs as a strong initial point and directly apply parameter-efficient tuning (PET) in the first session for adapting to downstream tasks. In the following sessions, most methods freeze model parameters for tackling forgetting issues. However, applying PET directly to downstream data cannot fully explore the inherent knowledge in PTMs. Additionally, freezing the parameters in incremental sessions hinders models' plasticity to novel concepts not covered in the first session. To solve the above issues, we propose a Slow And Fast parameter-Efficient tuning (SAFE) framework. In particular, to inherit general knowledge from foundation models, we include a transfer loss function by measuring the correlation between the PTM and the PET-applied model. After calibrating in the first session, the slow efficient tuning parameters can capture more informative features, improving generalization to incoming classes. Moreover, to further incorporate novel concepts, we strike a balance between stability and plasticity by fixing slow efficient tuning parameters and continuously updating the fast ones. Specifically, a cross-classification loss with feature alignment is proposed to circumvent catastrophic forgetting. During inference, we introduce an entropy-based aggregation strategy to dynamically utilize the complementarity in the slow and fast learners. Extensive experiments on seven benchmark datasets verify the effectiveness of our method by significantly surpassing the state-of-the-art.
Abstract:Most knowledge distillation (KD) methodologies predominantly focus on teacher-student pairs with similar architectures, such as both being convolutional neural networks (CNNs). However, the potential and flexibility of KD can be greatly improved by expanding it to novel Cross-Architecture KD (CAKD), where the knowledge of homogeneous and heterogeneous teachers can be transferred flexibly to a given student. The primary challenge in CAKD lies in the substantial feature gaps between heterogeneous models, originating from the distinction of their inherent inductive biases and module functions. To this end, we introduce an assistant model as a bridge to facilitate smooth feature knowledge transfer between heterogeneous teachers and students. More importantly, within our proposed design principle, the assistant model combines the advantages of cross-architecture inductive biases and module functions by merging convolution and attention modules derived from both student and teacher module functions. Furthermore, we observe that heterogeneous features exhibit diverse spatial distributions in CAKD, hindering the effectiveness of conventional pixel-wise mean squared error (MSE) loss. Therefore, we leverage a spatial-agnostic InfoNCE loss to align features after spatial smoothing, thereby improving the feature alignments in CAKD. Our proposed method is evaluated across some homogeneous model pairs and arbitrary heterogeneous combinations of CNNs, ViTs, and MLPs, achieving state-of-the-art performance for distilled models with a maximum gain of 11.47% on CIFAR-100 and 3.67% on ImageNet-1K. Our code and models will be released.
Abstract:Survival analysis using pathology images poses a considerable challenge, as it requires the localization of relevant information from the multitude of tiles within whole slide images (WSIs). Current methods typically resort to a two-stage approach, where a pre-trained network extracts features from tiles, which are then used by survival models. This process, however, does not optimize the survival models in an end-to-end manner, and the pre-extracted features may not be ideally suited for survival prediction. To address this limitation, we present a novel end-to-end Visual Prompt Tuning framework for survival analysis, named VPTSurv. VPTSurv refines feature embeddings through an efficient encoder-decoder framework. The encoder remains fixed while the framework introduces tunable visual prompts and adaptors, thus permitting end-to-end training specifically for survival prediction by optimizing only the lightweight adaptors and the decoder. Moreover, the versatile VPTSurv framework accommodates multi-source information as prompts, thereby enriching the survival model. VPTSurv achieves substantial increases of 8.7% and 12.5% in the C-index on two immunohistochemical pathology image datasets. These significant improvements highlight the transformative potential of the end-to-end VPT framework over traditional two-stage methods.
Abstract:The early detection and precise diagnosis of liver tumors are tasks of critical clinical value, yet they pose significant challenges due to the high heterogeneity and variability of liver tumors. In this work, a precise LIver tumor DIAgnosis network on multi-phase contrast-enhance CT, named LIDIA, is proposed for real-world scenario. To fully utilize all available phases in contrast-enhanced CT, LIDIA first employs the iterative fusion module to aggregate variable numbers of image phases, thereby capturing the features of lesions at different phases for better tumor diagnosis. To effectively mitigate the high heterogeneity problem of liver tumors, LIDIA incorporates asymmetric contrastive learning to enhance the discriminability between different classes. To evaluate our method, we constructed a large-scale dataset comprising 1,921 patients and 8,138 lesions. LIDIA has achieved an average AUC of 93.6% across eight different types of lesions, demonstrating its effectiveness. Besides, LIDIA also demonstrated strong generalizability with an average AUC of 89.3% when tested on an external cohort of 828 patients.
Abstract:Esophageal varices (EV), a serious health concern resulting from portal hypertension, are traditionally diagnosed through invasive endoscopic procedures. Despite non-contrast computed tomography (NC-CT) imaging being a less expensive and non-invasive imaging modality, it has yet to gain full acceptance as a primary clinical diagnostic tool for EV evaluation. To overcome existing diagnostic challenges, we present the Multi-Organ-cOhesion-Network (MOON), a novel framework enhancing the analysis of critical organ features in NC-CT scans for effective assessment of EV. Drawing inspiration from the thorough assessment practices of radiologists, MOON establishes a cohesive multiorgan analysis model that unifies the imaging features of the related organs of EV, namely esophagus, liver, and spleen. This integration significantly increases the diagnostic accuracy for EV. We have compiled an extensive NC-CT dataset of 1,255 patients diagnosed with EV, spanning three grades of severity. Each case is corroborated by endoscopic diagnostic results. The efficacy of MOON has been substantiated through a validation process involving multi-fold cross-validation on 1,010 cases and an independent test on 245 cases, exhibiting superior diagnostic performance compared to methods focusing solely on the esophagus (for classifying severe grade: AUC of 0.864 versus 0.803, and for moderate to severe grades: AUC of 0.832 versus 0.793). To our knowledge, MOON is the first work to incorporate a synchronized multi-organ NC-CT analysis for EV assessment, providing a more acceptable and minimally invasive alternative for patients compared to traditional endoscopy.
Abstract:Zero-shot learning (ZSL) aims to recognize novel classes through transferring shared semantic knowledge (e.g., attributes) from seen classes to unseen classes. Recently, attention-based methods have exhibited significant progress which align visual features and attributes via a spatial attention mechanism. However, these methods only explore visual-semantic relationship in the spatial dimension, which can lead to classification ambiguity when different attributes share similar attention regions, and semantic relationship between attributes is rarely discussed. To alleviate the above problems, we propose a Dual Relation Mining Network (DRMN) to enable more effective visual-semantic interactions and learn semantic relationship among attributes for knowledge transfer. Specifically, we introduce a Dual Attention Block (DAB) for visual-semantic relationship mining, which enriches visual information by multi-level feature fusion and conducts spatial attention for visual to semantic embedding. Moreover, an attribute-guided channel attention is utilized to decouple entangled semantic features. For semantic relationship modeling, we utilize a Semantic Interaction Transformer (SIT) to enhance the generalization of attribute representations among images. Additionally, a global classification branch is introduced as a complement to human-defined semantic attributes, and we then combine the results with attribute-based classification. Extensive experiments demonstrate that the proposed DRMN leads to new state-of-the-art performances on three standard ZSL benchmarks, i.e., CUB, SUN, and AwA2.