Abstract:Chest pain symptoms are highly prevalent in emergency departments (EDs), where acute aortic syndrome (AAS) is a catastrophic cardiovascular emergency with a high fatality rate, especially when timely and accurate treatment is not administered. However, current triage practices in the ED can cause up to approximately half of patients with AAS to have an initially missed diagnosis or be misdiagnosed as having other acute chest pain conditions. Subsequently, these AAS patients will undergo clinically inaccurate or suboptimal differential diagnosis. Fortunately, even under these suboptimal protocols, nearly all these patients underwent non-contrast CT covering the aorta anatomy at the early stage of differential diagnosis. In this study, we developed an artificial intelligence model (DeepAAS) using non-contrast CT, which is highly accurate for identifying AAS and provides interpretable results to assist in clinical decision-making. Performance was assessed in two major phases: a multi-center retrospective study (n = 20,750) and an exploration in real-world emergency scenarios (n = 137,525). In the multi-center cohort, DeepAAS achieved a mean area under the receiver operating characteristic curve of 0.958 (95% CI 0.950-0.967). In the real-world cohort, DeepAAS detected 109 AAS patients with misguided initial suspicion, achieving 92.6% (95% CI 76.2%-97.5%) in mean sensitivity and 99.2% (95% CI 99.1%-99.3%) in mean specificity. Our AI model performed well on non-contrast CT at all applicable early stages of differential diagnosis workflows, effectively reduced the overall missed diagnosis and misdiagnosis rate from 48.8% to 4.8% and shortened the diagnosis time for patients with misguided initial suspicion from an average of 681.8 (74-11,820) mins to 68.5 (23-195) mins. DeepAAS could effectively fill the gap in the current clinical workflow without requiring additional tests.
Abstract:Recently, One-stage Weakly Supervised Semantic Segmentation (WSSS) with image-level labels has gained increasing interest due to simplification over its cumbersome multi-stage counterpart. Limited by the inherent ambiguity of Class Activation Map (CAM), we observe that one-stage pipelines often encounter confirmation bias caused by incorrect CAM pseudo-labels, impairing their final segmentation performance. Although recent works discard many unreliable pseudo-labels to implicitly alleviate this issue, they fail to exploit sufficient supervision for their models. To this end, we propose a dual student framework with trustworthy progressive learning (DuPL). Specifically, we propose a dual student network with a discrepancy loss to yield diverse CAMs for each sub-net. The two sub-nets generate supervision for each other, mitigating the confirmation bias caused by learning their own incorrect pseudo-labels. In this process, we progressively introduce more trustworthy pseudo-labels to be involved in the supervision through dynamic threshold adjustment with an adaptive noise filtering strategy. Moreover, we believe that every pixel, even discarded from supervision due to its unreliability, is important for WSSS. Thus, we develop consistency regularization on these discarded regions, providing supervision of every pixel. Experiment results demonstrate the superiority of the proposed DuPL over the recent state-of-the-art alternatives on PASCAL VOC 2012 and MS COCO datasets. Code is available at https://github.com/Wu0409/DuPL.
Abstract:Video Object Segmentation (VOS) task aims to segment objects in videos. However, previous settings either require time-consuming manual masks of target objects at the first frame during inference or lack the flexibility to specify arbitrary objects of interest. To address these limitations, we propose the setting named Click Video Object Segmentation (ClickVOS) which segments objects of interest across the whole video according to a single click per object in the first frame. And we provide the extended datasets DAVIS-P and YouTubeVOSP that with point annotations to support this task. ClickVOS is of significant practical applications and research implications due to its only 1-2 seconds interaction time for indicating an object, comparing annotating the mask of an object needs several minutes. However, ClickVOS also presents increased challenges. To address this task, we propose an end-to-end baseline approach named called Attention Before Segmentation (ABS), motivated by the attention process of humans. ABS utilizes the given point in the first frame to perceive the target object through a concise yet effective segmentation attention. Although the initial object mask is possibly inaccurate, in our ABS, as the video goes on, the initially imprecise object mask can self-heal instead of deteriorating due to error accumulation, which is attributed to our designed improvement memory that continuously records stable global object memory and updates detailed dense memory. In addition, we conduct various baseline explorations utilizing off-the-shelf algorithms from related fields, which could provide insights for the further exploration of ClickVOS. The experimental results demonstrate the superiority of the proposed ABS approach. Extended datasets and codes will be available at https://github.com/PinxueGuo/ClickVOS.
Abstract:Recent unsupervised anomaly detection methods often rely on feature extractors pretrained with auxiliary datasets or on well-crafted anomaly-simulated samples. However, this might limit their adaptability to an increasing set of anomaly detection tasks due to the priors in the selection of auxiliary datasets or the strategy of anomaly simulation. To tackle this challenge, we first introduce a prior-less anomaly generation paradigm and subsequently develop an innovative unsupervised anomaly detection framework named GRAD, grounded in this paradigm. GRAD comprises three essential components: (1) a diffusion model (PatchDiff) to generate contrastive patterns by preserving the local structures while disregarding the global structures present in normal images, (2) a self-supervised reweighting mechanism to handle the challenge of long-tailed and unlabeled contrastive patterns generated by PatchDiff, and (3) a lightweight patch-level detector to efficiently distinguish the normal patterns and reweighted contrastive patterns. The generation results of PatchDiff effectively expose various types of anomaly patterns, e.g. structural and logical anomaly patterns. In addition, extensive experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation and demonstrate that GRAD achieves competitive anomaly detection accuracy and superior inference speed.
Abstract:As the most important auxiliary transportation equipment in coal mines, mining electric locomotives are mostly operated manually at present. However, due to the complex and ever-changing coal mine environment, electric locomotive safety accidents occur frequently these years. A mining electric locomotive control method that can adapt to different complex mining environments is needed. Reinforcement Learning (RL) is concerned with how artificial agents ought to take actions in an environment so as to maximize reward, which can help achieve automatic control of mining electric locomotive. In this paper, we present how to apply RL to the autonomous control of mining electric locomotives. To achieve more precise control, we further propose an improved epsilon-greedy (IEG) algorithm which can better balance the exploration and exploitation. To verify the effectiveness of this method, a co-simulation platform for autonomous control of mining electric locomotives is built which can complete closed-loop simulation of the vehicles. The simulation results show that this method ensures the locomotives following the front vehicle safely and responding promptly in the event of sudden obstacles on the road when the vehicle in complex and uncertain coal mine environments.
Abstract:In facial landmark localization tasks, various occlusions heavily degrade the localization accuracy due to the partial observability of facial features. This paper proposes a structural relation network (SRN) for occlusion-robust landmark localization. Unlike most existing methods that simply exploit the shape constraint, the proposed SRN aims to capture the structural relations among different facial components. These relations can be considered a more powerful shape constraint against occlusion. To achieve this, a hierarchical structural relation module (HSRM) is designed to hierarchically reason the structural relations that represent both long- and short-distance spatial dependencies. Compared with existing network architectures, HSRM can efficiently model the spatial relations by leveraging its geometry-aware network architecture, which reduces the semantic ambiguity caused by occlusion. Moreover, the SRN augments the training data by synthesizing occluded faces. To further extend our SRN for occluded video data, we formulate the occluded face synthesis as a Markov decision process (MDP). Specifically, it plans the movement of the dynamic occlusion based on an accumulated reward associated with the performance degradation of the pre-trained SRN. This procedure augments hard samples for robust facial landmark tracking. Extensive experimental results indicate that the proposed method achieves outstanding performance on occluded and masked faces. Code is available at https://github.com/zhuccly/SRN.
Abstract:The main difficulty in high-dimensional anomaly detection tasks is the lack of anomalous data for training. And simply collecting anomalous data from the real world, common distributions, or the boundary of normal data manifold may face the problem of missing anomaly modes. This paper first introduces a novel method to generate anomalous data by breaking up global structures while preserving local structures of normal data at multiple levels. It can efficiently expose local abnormal structures of various levels. To fully exploit the exposed multi-level abnormal structures, we propose to train multiple level-specific patch-based detectors with contrastive losses. Each detector learns to detect local abnormal structures of corresponding level at all locations and outputs patchwise anomaly scores. By aggregating the outputs of all level-specific detectors, we obtain a model that can detect all potential anomalies. The effectiveness is evaluated on MNIST, CIFAR10, and ImageNet10 dataset, where the results surpass the accuracy of state-of-the-art methods. Qualitative experiments demonstrate our model is robust that it unbiasedly detects all anomaly modes.
Abstract:An instance with a bad mask might make a composite image that uses it look fake. This encourages us to learn segmentation by generating realistic composite images. To achieve this, we propose a novel framework that exploits a new proposed prior called the independence prior based on Generative Adversarial Networks (GANs). The generator produces an image with multiple category-specific instance providers, a layout module and a composition module. Firstly, each provider independently outputs a category-specific instance image with a soft mask. Then the provided instances' poses are corrected by the layout module. Lastly, the composition module combines these instances into a final image. Training with adversarial loss and penalty for mask area, each provider learns a mask that is as small as possible but enough to cover a complete category-specific instance. Weakly supervised semantic segmentation methods widely use grouping cues modeling the association between image parts, which are either artificially designed or learned with costly segmentation labels or only modeled on local pairs. Unlike them, our method automatically models the dependence between any parts and learns instance segmentation. We apply our framework in two cases: (1) Foreground segmentation on category-specific images with box-level annotation. (2) Unsupervised learning of instance appearances and masks with only one image of homogeneous object cluster (HOC). We get appealing results in both tasks, which shows the independence prior is useful for instance segmentation and it is possible to unsupervisedly learn instance masks with only one image.