Jack
Abstract:Novel-view synthesis (NVS) approaches play a critical role in vast scene reconstruction. However, these methods rely heavily on dense image inputs and prolonged training times, making them unsuitable where computational resources are limited. Additionally, few-shot methods often struggle with poor reconstruction quality in vast environments. This paper presents DGTR, a novel distributed framework for efficient Gaussian reconstruction for sparse-view vast scenes. Our approach divides the scene into regions, processed independently by drones with sparse image inputs. Using a feed-forward Gaussian model, we predict high-quality Gaussian primitives, followed by a global alignment algorithm to ensure geometric consistency. Synthetic views and depth priors are incorporated to further enhance training, while a distillation-based model aggregation mechanism enables efficient reconstruction. Our method achieves high-quality large-scale scene reconstruction and novel-view synthesis in significantly reduced training times, outperforming existing approaches in both speed and scalability. We demonstrate the effectiveness of our framework on vast aerial scenes, achieving high-quality results within minutes. Code will released on our [https://3d-aigc.github.io/DGTR].
Abstract:Existing text-to-video (T2V) models often struggle with generating videos with sufficiently pronounced or complex actions. A key limitation lies in the text prompt's inability to precisely convey intricate motion details. To address this, we propose a novel framework, MVideo, designed to produce long-duration videos with precise, fluid actions. MVideo overcomes the limitations of text prompts by incorporating mask sequences as an additional motion condition input, providing a clearer, more accurate representation of intended actions. Leveraging foundational vision models such as GroundingDINO and SAM2, MVideo automatically generates mask sequences, enhancing both efficiency and robustness. Our results demonstrate that, after training, MVideo effectively aligns text prompts with motion conditions to produce videos that simultaneously meet both criteria. This dual control mechanism allows for more dynamic video generation by enabling alterations to either the text prompt or motion condition independently, or both in tandem. Furthermore, MVideo supports motion condition editing and composition, facilitating the generation of videos with more complex actions. MVideo thus advances T2V motion generation, setting a strong benchmark for improved action depiction in current video diffusion models. Our project page is available at https://mvideo-v1.github.io/.
Abstract:Following the milestones in large language models (LLMs) and multimodal models, we have seen a surge in applying LLMs to biochemical tasks. Leveraging graph features and molecular text representations, LLMs can tackle various tasks, such as predicting chemical reaction outcomes and describing molecular properties. However, most current work overlooks the multi-level nature of graph features. The impact of different feature levels on LLMs and the importance of each level remain unexplored, and it is possible that different chemistry tasks require different feature levels. In this work, we first investigate the effect of feature granularity by fusing GNN-generated feature tokens, discovering that even reducing all tokens to a single token does not significantly impact performance. We then explore the effect of various feature levels on performance, finding that both the quality of LLM-generated molecules and performance on different tasks benefit from different feature levels. We conclude with two key insights: (1) current molecular Multimodal LLMs(MLLMs) lack a comprehensive understanding of graph features, and (2) static processing is not sufficient for hierarchical graph feature. Our code will be publicly available soon.
Abstract:Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/SaFoLab-WISC/InjecGuard.
Abstract:Co-examination of second-harmonic generation (SHG) and bright-field (BF) microscopy enables the differentiation of tissue components and collagen fibers, aiding the analysis of human breast and pancreatic cancer tissues. However, large discrepancies between SHG and BF images pose challenges for current learning-based registration models in aligning SHG to BF. In this paper, we propose a novel multi-modal registration framework that employs fidelity-imposed displacement editing to address these challenges. The framework integrates batch-wise contrastive learning, feature-based pre-alignment, and instance-level optimization. Experimental results from the Learn2Reg COMULISglobe SHG-BF Challenge validate the effectiveness of our method, securing the 1st place on the online leaderboard.
Abstract:Visible-infrared pedestrian Re-identification (VI-ReID) aims to match pedestrian images captured by infrared cameras and visible cameras. However, VI-ReID, like other traditional cross-modal image matching tasks, poses significant challenges due to its human-centered nature. This is evidenced by the shortcomings of existing methods, which struggle to extract common features across modalities, while losing valuable information when bridging the gap between them in the implicit feature space, potentially compromising security. To address this vulnerability, this paper introduces the first physical adversarial attack against VI-ReID models. Our method, termed Edge-Attack, specifically tests the models' ability to leverage deep-level implicit features by focusing on edge information, the most salient explicit feature differentiating individuals across modalities. Edge-Attack utilizes a novel two-step approach. First, a multi-level edge feature extractor is trained in a self-supervised manner to capture discriminative edge representations for each individual. Second, a generative model based on Vision Transformer Generative Adversarial Networks (ViTGAN) is employed to generate adversarial patches conditioned on the extracted edge features. By applying these patches to pedestrian clothing, we create realistic, physically-realizable adversarial samples. This black-box, self-supervised approach ensures the generalizability of our attack against various VI-ReID models. Extensive experiments on SYSU-MM01 and RegDB datasets, including real-world deployments, demonstrate the effectiveness of Edge- Attack in significantly degrading the performance of state-of-the-art VI-ReID methods.
Abstract:Speech recognition and speech synthesis models are typically trained separately, each with its own set of learning objectives, training data, and model parameters, resulting in two distinct large networks. We propose a parameter-efficient approach to learning ASR and TTS jointly via a multi-task learning objective and shared parameters. Our evaluation demonstrates that the performance of our multi-task model is comparable to that of individually trained models while significantly saving computational and memory costs ($\sim$50\% reduction in the total number of parameters required for the two tasks combined). We experiment with English as a resource-rich language, and Arabic as a relatively low-resource language due to shortage of TTS data. Our models are trained with publicly available data, and both the training code and model checkpoints are openly available for further research.
Abstract:Distinguishing between swarming and swimming, the two principal forms of bacterial movement, holds significant conceptual and clinical relevance. This is because bacteria that exhibit swarming capabilities often possess unique properties crucial to the pathogenesis of infectious diseases and may also have therapeutic potential. Here, we report a deep learning-based swarming classifier that rapidly and autonomously predicts swarming probability using a single blurry image. Compared with traditional video-based, manually-processed approaches, our method is particularly suited for high-throughput environments and provides objective, quantitative assessments of swarming probability. The swarming classifier demonstrated in our work was trained on Enterobacter sp. SM3 and showed good performance when blindly tested on new swarming (positive) and swimming (negative) test images of SM3, achieving a sensitivity of 97.44% and a specificity of 100%. Furthermore, this classifier demonstrated robust external generalization capabilities when applied to unseen bacterial species, such as Serratia marcescens DB10 and Citrobacter koseri H6. It blindly achieved a sensitivity of 97.92% and a specificity of 96.77% for DB10, and a sensitivity of 100% and a specificity of 97.22% for H6. This competitive performance indicates the potential to adapt our approach for diagnostic applications through portable devices or even smartphones. This adaptation would facilitate rapid, objective, on-site screening for bacterial swarming motility, potentially enhancing the early detection and treatment assessment of various diseases, including inflammatory bowel diseases (IBD) and urinary tract infections (UTI).
Abstract:Aquatic mammals, such as pinnipeds, utilize their whiskers to detect and discriminate objects and analyze water movements, inspiring the development of robotic whiskers for sensing contacts, surfaces, and water flows. We present the design and application of underwater whisker sensors based on Fiber Bragg Grating (FBG) technology. These passive whiskers are mounted along the robot$'$s exterior to sense its surroundings through light, non-intrusive contacts. For contact tracking, we employ a sim-to-real learning framework, which involves extensive data collection in simulation followed by a sim-to-real calibration process to transfer the model trained in simulation to the real world. Experiments with whiskers immersed in water indicate that our approach can track contact points with an accuracy of $<2$ mm, without requiring precise robot proprioception. We demonstrate that the approach also generalizes to unseen objects.
Abstract:Recent advancements in multimodal foundation models have yielded significant progress in vision-language understanding. Initial attempts have also explored the potential of multimodal large language models (MLLMs) for visual content generation. However, existing works have insufficiently addressed the varying granularity demands of different image generation tasks within a unified MLLM paradigm - from the diversity required in text-to-image generation to the precise controllability needed in image manipulation. In this work, we propose PUMA, emPowering Unified MLLM with Multi-grAnular visual generation. PUMA unifies multi-granular visual features as both inputs and outputs of MLLMs, elegantly addressing the different granularity requirements of various image generation tasks within a unified MLLM framework. Following multimodal pretraining and task-specific instruction tuning, PUMA demonstrates proficiency in a wide range of multimodal tasks. This work represents a significant step towards a truly unified MLLM capable of adapting to the granularity demands of various visual tasks. The code and model will be released in https://github.com/rongyaofang/PUMA.