Jack
Abstract:Advanced opinion dynamics modeling is vital for deciphering social behavior, emphasizing its role in mitigating polarization and securing cyberspace. To synergize mechanistic interpretability with data-driven flexibility, recent studies have explored the integration of Physics-Informed Neural Networks (PINNs) for opinion modeling. Despite this promise, existing methods are tailored to incomplete priors, lacking a comprehensive physical system to integrate dynamics from local, global, and endogenous levels. Moreover, penalty-based constraints adopted in existing methods struggle to deeply encode physical priors, leading to optimization pathologies and discrepancy between latent representations and physical transparency. To this end, we offer a physical view to interpret opinion dynamics via Diffusion-Convection-Reaction (DCR) system inspired by interacting particle theory. Building upon the Neural ODEs, we define the neural opinion dynamics to coordinate neural networks with physical priors, and further present the OPINN, a physics-informed neural framework for opinion dynamics modeling. Evaluated on real-world and synthetic datasets, OPINN achieves state-of-the-art performance in opinion evolution forecasting, offering a promising paradigm for the nexus of cyber, physical, and social systems.
Abstract:Generating long-form audio-visual stories from a short user prompt remains challenging due to an intent-execution gap, where high-level narrative intent must be preserved across coherent, shot-level multimodal generation over long horizons. Existing approaches typically rely on feed-forward pipelines or prompt-only refinement, which often leads to semantic drift and identity inconsistency as sequences grow longer. We address this challenge by formulating storytelling as a closed-loop constraint enforcement problem and propose MUSE, a multi-agent framework that coordinates generation through an iterative plan-execute-verify-revise loop. MUSE translates narrative intent into explicit, machine-executable controls over identity, spatial composition, and temporal continuity, and applies targeted multimodal feedback to correct violations during generation. To evaluate open-ended storytelling without ground-truth references, we introduce MUSEBench, a reference-free evaluation protocol validated by human judgments. Experiments demonstrate that MUSE substantially improves long-horizon narrative coherence, cross-modal identity consistency, and cinematic quality compared with representative baselines.
Abstract:Handheld Optical Coherence Tomography Angiography (OCTA) enables noninvasive retinal imaging in uncooperative or pediatric subjects, but is highly susceptible to motion artifacts that severely degrade volumetric image quality. Sudden motion during 3D acquisition can lead to unsampled retinal regions across entire B-scans (cross-sectional slices), resulting in blank bands in en face projections. We propose VAMOS-OCTA, a deep learning framework for inpainting motion-corrupted B-scans using vessel-aware multi-axis supervision. We employ a 2.5D U-Net architecture that takes a stack of neighboring B-scans as input to reconstruct a corrupted center B-scan, guided by a novel Vessel-Aware Multi-Axis Orthogonal Supervision (VAMOS) loss. This loss combines vessel-weighted intensity reconstruction with axial and lateral projection consistency, encouraging vascular continuity in native B-scans and across orthogonal planes. Unlike prior work that focuses primarily on restoring the en face MIP, VAMOS-OCTA jointly enhances both cross-sectional B-scan sharpness and volumetric projection accuracy, even under severe motion corruptions. We trained our model on both synthetic and real-world corrupted volumes and evaluated its performance using both perceptual quality and pixel-wise accuracy metrics. VAMOS-OCTA consistently outperforms prior methods, producing reconstructions with sharp capillaries, restored vessel continuity, and clean en face projections. These results demonstrate that multi-axis supervision offers a powerful constraint for restoring motion-degraded 3D OCTA data. Our source code is available at https://github.com/MedICL-VU/VAMOS-OCTA.
Abstract:Time series generation (TSG) is widely used across domains, yet most existing methods assume regular sampling and fixed output resolutions. These assumptions are often violated in practice, where observations are irregular and sparse, while downstream applications require continuous and high-resolution TS. Although Neural Controlled Differential Equation (NCDE) is promising for modeling irregular TS, it is constrained by a single dynamics function, tightly coupled optimization, and limited ability to adapt learned dynamics to newly generated samples from the generative model. We propose Diff-MN, a continuous TSG framework that enhances NCDE with a Mixture-of-Experts (MoE) dynamics function and a decoupled architectural design for dynamics-focused training. To further enable NCDE to generalize to newly generated samples, Diff-MN employs a diffusion model to parameterize the NCDE temporal dynamics parameters (MoE weights), i.e., jointly learn the distribution of TS data and MoE weights. This design allows sample-specific NCDE parameters to be generated for continuous TS generation. Experiments on ten public and synthetic datasets demonstrate that Diff-MN consistently outperforms strong baselines on both irregular-to-regular and irregular-to-continuous TSG tasks. The code is available at the link https://github.com/microsoft/TimeCraft/tree/main/Diff-MN.
Abstract:Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
Abstract:Conventional supervised climate downscaling struggles to generalize to Global Climate Models (GCMs) due to the lack of paired training data and inherent domain gaps relative to reanalysis. Meanwhile, current zero-shot methods suffer from physical inconsistencies and vanishing gradient issues under large scaling factors. We propose Zero-Shot Statistical Downscaling (ZSSD), a zero-shot framework that performs statistical downscaling without paired data during training. ZSSD leverages a Physics-Consistent Climate Prior learned from reanalysis data, conditioned on geophysical boundaries and temporal information to enforce physical validity. Furthermore, to enable robust inference across varying GCMs, we introduce Unified Coordinate Guidance. This strategy addresses the vanishing gradient problem in vanilla DPS and ensures consistency with large-scale fields. Results show that ZSSD significantly outperforms existing zero-shot baselines in 99th percentile errors and successfully reconstructs complex weather events, such as tropical cyclones, across heterogeneous GCMs.
Abstract:Language models are revolutionizing the biochemistry domain, assisting scientists in drug design and chemical synthesis with high efficiency. Yet current approaches struggle between small language models prone to hallucination and limited knowledge retention, and large cloud-based language models plagued by privacy risks and high inference costs. To bridge this gap, we introduce ChemCRAFT, a novel framework leveraging agentic reinforcement learning to decouple chemical reasoning from knowledge storage. Instead of forcing the model to memorize vast chemical data, our approach empowers the language model to interact with a sandbox for precise information retrieval. This externalization of knowledge allows a locally deployable small model to achieve superior performance with minimal inference costs. To enable small language models for agent-calling ability, we build an agentic trajectory construction pipeline and a comprehensive chemical-agent sandbox. Based on sandbox interactions, we constructed ChemToolDataset, the first large-scale chemical tool trajectory dataset. Simultaneously, we propose SMILES-GRPO to build a dense chemical reward function, promoting the model's ability to call chemical agents. Evaluations across diverse aspects of drug design show that ChemCRAFT outperforms current cloud-based LLMs in molecular structure analysis, molecular optimization, and synthesis pathway prediction, demonstrating that scientific reasoning is not solely an emergent ability of model scale, but a learnable policy of tool orchestration. This work establishes a cost-effective and privacy-preserving paradigm for AI-aided chemistry, opening new avenues for accelerating molecular discovery with locally deployable agents.
Abstract:Sewing patterns define the structural foundation of garments and are essential for applications such as fashion design, fabrication, and physical simulation. Despite progress in automated pattern generation, accurately modeling sewing patterns remains difficult due to the broad variability in panel geometry and seam arrangements. In this work, we introduce a sewing pattern modeling method based on an implicit representation. We represent each panel using a signed distance field that defines its boundary and an unsigned distance field that identifies seam endpoints, and encode these fields into a continuous latent space that enables differentiable meshing. A latent flow matching model learns distributions over panel combinations in this representation, and a stitching prediction module recovers seam relations from extracted edge segments. This formulation allows accurate modeling and generation of sewing patterns with complex structures. We further show that it can be used to estimate sewing patterns from images with improved accuracy relative to existing approaches, and supports applications such as pattern completion and refitting, providing a practical tool for digital fashion design.
Abstract:LLM-driven Anomaly Detection (AD) helps enhance the understanding and explanatory abilities of anomalous behaviors in Time Series (TS). Existing methods face challenges of inadequate reasoning ability, deficient multi-turn dialogue capability, and narrow generalization. To this end, we 1) propose a multi-agent-based TS Evolution algorithm named TSEvol. On top of it, we 2) introduce the AD reasoning and multi-turn dialogue Dataset TSEData-20K and contribute the Chatbot family for AD, including ChatAD-Llama3-8B, Qwen2.5-7B, and Mistral-7B. Furthermore, 3) we propose the TS Kahneman-Tversky Optimization (TKTO) to enhance ChatAD's cross-task generalization capability. Lastly, 4) we propose a LLM-driven Learning-based AD Benchmark LLADBench to evaluate the performance of ChatAD and nine baselines across seven datasets and tasks. Our three ChatAD models achieve substantial gains, up to 34.50% in accuracy, 34.71% in F1, and a 37.42% reduction in false positives. Besides, via KTKO, our optimized ChatAD achieves competitive performance in reasoning and cross-task generalization on classification, forecasting, and imputation.
Abstract:Time series generation (TSG) plays a critical role in a wide range of domains, such as healthcare. However, most existing methods assume regularly sampled observations and fixed output resolutions, which are often misaligned with real-world scenarios where data are irregularly sampled and sparsely observed. This mismatch is particularly problematic in applications such as clinical monitoring, where irregular measurements must support downstream tasks requiring continuous and high-resolution time series. Neural Controlled Differential Equations (NCDEs) have shown strong potential for modeling irregular time series, yet they still face challenges in capturing complex dynamic temporal patterns and supporting continuous TSG. To address these limitations, we propose MN-TSG, a novel framework that explores Mixture-of-Experts (MoE)-based NCDEs and integrates them with existing TSG models for irregular and continuous generation tasks. The core of MN-TSG lies in a MoE-NCDE architecture with dynamically parameterized expert functions and a decoupled design that facilitates more effective optimization of MoE dynamics. Furthermore, we leverage existing TSG models to learn the joint distribution over the mixture of experts and the generated time series. This enables the framework not only to generate new samples, but also to produce appropriate expert configurations tailored to each sample, thereby supporting refined continuous TSG. Extensive experiments on ten public and synthetic datasets demonstrate the effectiveness of MN-TSG, consistently outperforming strong TSG baselines on both irregular-to-regular and irregular-to-continuous generation tasks.