Abstract:Comprehending natural language instructions is a charming property for both 2D and 3D layout synthesis systems. Existing methods implicitly model object joint distributions and express object relations, hindering generation's controllability. We introduce InstructLayout, a novel generative framework that integrates a semantic graph prior and a layout decoder to improve controllability and fidelity for 2D and 3D layout synthesis. The proposed semantic graph prior learns layout appearances and object distributions simultaneously, demonstrating versatility across various downstream tasks in a zero-shot manner. To facilitate the benchmarking for text-driven 2D and 3D scene synthesis, we respectively curate two high-quality datasets of layout-instruction pairs from public Internet resources with large language and multimodal models. Extensive experimental results reveal that the proposed method outperforms existing state-of-the-art approaches by a large margin in both 2D and 3D layout synthesis tasks. Thorough ablation studies confirm the efficacy of crucial design components.
Abstract:The blooming of virtual reality and augmented reality (VR/AR) technologies has driven an increasing demand for the creation of high-quality, immersive, and dynamic environments. However, existing generative techniques either focus solely on dynamic objects or perform outpainting from a single perspective image, failing to meet the needs of VR/AR applications. In this work, we tackle the challenging task of elevating a single panorama to an immersive 4D experience. For the first time, we demonstrate the capability to generate omnidirectional dynamic scenes with 360-degree views at 4K resolution, thereby providing an immersive user experience. Our method introduces a pipeline that facilitates natural scene animations and optimizes a set of 4D Gaussians using efficient splatting techniques for real-time exploration. To overcome the lack of scene-scale annotated 4D data and models, especially in panoramic formats, we propose a novel Panoramic Denoiser that adapts generic 2D diffusion priors to animate consistently in 360-degree images, transforming them into panoramic videos with dynamic scenes at targeted regions. Subsequently, we elevate the panoramic video into a 4D immersive environment while preserving spatial and temporal consistency. By transferring prior knowledge from 2D models in the perspective domain to the panoramic domain and the 4D lifting with spatial appearance and geometry regularization, we achieve high-quality Panorama-to-4D generation at a resolution of (4096 $\times$ 2048) for the first time. See the project website at https://4k4dgen.github.io.
Abstract:We interact with the world with our hands and see it through our own (egocentric) perspective. A holistic 3D understanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation. Accurately reconstructing such interactions in 3D is challenging due to heavy occlusion, viewpoint bias, camera distortion, and motion blur from the head movement. To this end, we designed the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits. Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks. Our analysis demonstrates the effectiveness of addressing distortion specific to egocentric cameras, adopting high-capacity transformers to learn complex hand-object interactions, and fusing predictions from different views. Our study further reveals challenging scenarios intractable with state-of-the-art methods, such as fast hand motion, object reconstruction from narrow egocentric views, and close contact between two hands and objects. Our efforts will enrich the community's knowledge foundation and facilitate future hand studies on egocentric hand-object interactions.
Abstract:This report provides an overview of the challenge hosted at the OpenSUN3D Workshop on Open-Vocabulary 3D Scene Understanding held in conjunction with ICCV 2023. The goal of this workshop series is to provide a platform for exploration and discussion of open-vocabulary 3D scene understanding tasks, including but not limited to segmentation, detection and mapping. We provide an overview of the challenge hosted at the workshop, present the challenge dataset, the evaluation methodology, and brief descriptions of the winning methods. For additional details, please see https://opensun3d.github.io/index_iccv23.html.
Abstract:Differentiable architecture search (DARTS) has significantly promoted the development of NAS techniques because of its high search efficiency and effectiveness but suffers from performance collapse. In this paper, we make efforts to alleviate the performance collapse problem for DARTS from two aspects. First, we investigate the expressive power of the supernet in DARTS and then derive a new setup of DARTS paradigm with only training BatchNorm. Second, we theoretically find that random features dilute the auxiliary connection role of skip-connection in supernet optimization and enable search algorithm focus on fairer operation selection, thereby solving the performance collapse problem. We instantiate DARTS and PC-DARTS with random features to build an improved version for each named RF-DARTS and RF-PCDARTS respectively. Experimental results show that RF-DARTS obtains \textbf{94.36\%} test accuracy on CIFAR-10 (which is the nearest optimal result in NAS-Bench-201), and achieves the newest state-of-the-art top-1 test error of \textbf{24.0\%} on ImageNet when transferring from CIFAR-10. Moreover, RF-DARTS performs robustly across three datasets (CIFAR-10, CIFAR-100, and SVHN) and four search spaces (S1-S4). Besides, RF-PCDARTS achieves even better results on ImageNet, that is, \textbf{23.9\%} top-1 and \textbf{7.1\%} top-5 test error, surpassing representative methods like single-path, training-free, and partial-channel paradigms directly searched on ImageNet.
Abstract:The key challenge in neural architecture search (NAS) is designing how to explore wisely in the huge search space. We propose a new NAS method called TNAS (NAS with trees), which improves search efficiency by exploring only a small number of architectures while also achieving a higher search accuracy. TNAS introduces an architecture tree and a binary operation tree, to factorize the search space and substantially reduce the exploration size. TNAS performs a modified bi-level Breadth-First Search in the proposed trees to discover a high-performance architecture. Impressively, TNAS finds the global optimal architecture on CIFAR-10 with test accuracy of 94.37\% in four GPU hours in NAS-Bench-201. The average test accuracy is 94.35\%, which outperforms the state-of-the-art. Code is available at: \url{https://github.com/guochengqian/TNAS}.
Abstract:Knowledge distillation field delicately designs various types of knowledge to shrink the performance gap between compact student and large-scale teacher. These existing distillation approaches simply focus on the improvement of \textit{knowledge quality}, but ignore the significant influence of \textit{knowledge quantity} on the distillation procedure. Opposed to the conventional distillation approaches, which extract knowledge from a fixed teacher computation graph, this paper explores a non-negligible research direction from a novel perspective of \textit{knowledge quantity} to further improve the efficacy of knowledge distillation. We introduce a new concept of knowledge decomposition, and further put forward the \textbf{P}artial to \textbf{W}hole \textbf{K}nowledge \textbf{D}istillation~(\textbf{PWKD}) paradigm. Specifically, we reconstruct teacher into weight-sharing sub-networks with same depth but increasing channel width, and train sub-networks jointly to obtain decomposed knowledge~(sub-networks with more channels represent more knowledge). Then, student extract partial to whole knowledge from the pre-trained teacher within multiple training stages where cyclic learning rate is leveraged to accelerate convergence. Generally, \textbf{PWKD} can be regarded as a plugin to be compatible with existing offline knowledge distillation approaches. To verify the effectiveness of \textbf{PWKD}, we conduct experiments on two benchmark datasets:~CIFAR-100 and ImageNet, and comprehensive evaluation results reveal that \textbf{PWKD} consistently improve existing knowledge distillation approaches without bells and whistles.
Abstract:In this paper, we investigate a new variant of neural architecture search (NAS) paradigm -- searching with random labels (RLNAS). The task sounds counter-intuitive for most existing NAS algorithms since random label provides few information on the performance of each candidate architecture. Instead, we propose a novel NAS framework based on ease-of-convergence hypothesis, which requires only random labels during searching. The algorithm involves two steps: first, we train a SuperNet using random labels; second, from the SuperNet we extract the sub-network whose weights change most significantly during the training. Extensive experiments are evaluated on multiple datasets (e.g. NAS-Bench-201 and ImageNet) and multiple search spaces (e.g. DARTS-like and MobileNet-like). Very surprisingly, RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.