Abstract:Multi-baseline SAR 3D imaging faces significant challenges due to data sparsity. In recent years, deep learning techniques have achieved notable success in enhancing the quality of sparse SAR 3D imaging. However, previous work typically rely on full-aperture high-resolution radar images to supervise the training of deep neural networks (DNNs), utilizing only single-modal information from radar data. Consequently, imaging performance is limited, and acquiring full-aperture data for multi-baseline SAR is costly and sometimes impractical in real-world applications. In this paper, we propose a Cross-Modal Reconstruction Network (CMR-Net), which integrates differentiable render and cross-modal supervision with optical images to reconstruct highly sparse multi-baseline SAR 3D images of vehicle targets into visually structured and high-resolution images. We meticulously designed the network architecture and training strategies to enhance network generalization capability. Remarkably, CMR-Net, trained solely on simulated data, demonstrates high-resolution reconstruction capabilities on both publicly available simulation datasets and real measured datasets, outperforming traditional sparse reconstruction algorithms based on compressed sensing and other learning-based methods. Additionally, using optical images as supervision provides a cost-effective way to build training datasets, reducing the difficulty of method dissemination. Our work showcases the broad prospects of deep learning in multi-baseline SAR 3D imaging and offers a novel path for researching radar imaging based on cross-modal learning theory.
Abstract:We have recently seen tremendous progress in realistic text-to-motion generation. Yet, the existing methods often fail or produce implausible motions with unseen text inputs, which limits the applications. In this paper, we present OMG, a novel framework, which enables compelling motion generation from zero-shot open-vocabulary text prompts. Our key idea is to carefully tailor the pretrain-then-finetune paradigm into the text-to-motion generation. At the pre-training stage, our model improves the generation ability by learning the rich out-of-domain inherent motion traits. To this end, we scale up a large unconditional diffusion model up to 1B parameters, so as to utilize the massive unlabeled motion data up to over 20M motion instances. At the subsequent fine-tuning stage, we introduce motion ControlNet, which incorporates text prompts as conditioning information, through a trainable copy of the pre-trained model and the proposed novel Mixture-of-Controllers (MoC) block. MoC block adaptively recognizes various ranges of the sub-motions with a cross-attention mechanism and processes them separately with the text-token-specific experts. Such a design effectively aligns the CLIP token embeddings of text prompts to various ranges of compact and expressive motion features. Extensive experiments demonstrate that our OMG achieves significant improvements over the state-of-the-art methods on zero-shot text-to-motion generation. Project page: https://tr3e.github.io/omg-page.