Abstract:Virtual Try-On (VTON) is a transformative technology in e-commerce and fashion design, enabling realistic digital visualization of clothing on individuals. In this work, we propose VTON 360, a novel 3D VTON method that addresses the open challenge of achieving high-fidelity VTON that supports any-view rendering. Specifically, we leverage the equivalence between a 3D model and its rendered multi-view 2D images, and reformulate 3D VTON as an extension of 2D VTON that ensures 3D consistent results across multiple views. To achieve this, we extend 2D VTON models to include multi-view garments and clothing-agnostic human body images as input, and propose several novel techniques to enhance them, including: i) a pseudo-3D pose representation using normal maps derived from the SMPL-X 3D human model, ii) a multi-view spatial attention mechanism that models the correlations between features from different viewing angles, and iii) a multi-view CLIP embedding that enhances the garment CLIP features used in 2D VTON with camera information. Extensive experiments on large-scale real datasets and clothing images from e-commerce platforms demonstrate the effectiveness of our approach. Project page: https://scnuhealthy.github.io/VTON360.
Abstract:Vision Transformer models exhibit immense power yet remain opaque to human understanding, posing challenges and risks for practical applications. While prior research has attempted to demystify these models through input attribution and neuron role analysis, there's been a notable gap in considering layer-level information and the holistic path of information flow across layers. In this paper, we investigate the significance of influential neuron paths within vision Transformers, which is a path of neurons from the model input to output that impacts the model inference most significantly. We first propose a joint influence measure to assess the contribution of a set of neurons to the model outcome. And we further provide a layer-progressive neuron locating approach that efficiently selects the most influential neuron at each layer trying to discover the crucial neuron path from input to output within the target model. Our experiments demonstrate the superiority of our method finding the most influential neuron path along which the information flows, over the existing baseline solutions. Additionally, the neuron paths have illustrated that vision Transformers exhibit some specific inner working mechanism for processing the visual information within the same image category. We further analyze the key effects of these neurons on the image classification task, showcasing that the found neuron paths have already preserved the model capability on downstream tasks, which may also shed some lights on real-world applications like model pruning. The project website including implementation code is available at https://foundation-model-research.github.io/NeuronPath/.
Abstract:In this paper, we present MVTokenFlow for high-quality 4D content creation from monocular videos. Recent advancements in generative models such as video diffusion models and multiview diffusion models enable us to create videos or 3D models. However, extending these generative models for dynamic 4D content creation is still a challenging task that requires the generated content to be consistent spatially and temporally. To address this challenge, MVTokenFlow utilizes the multiview diffusion model to generate multiview images on different timesteps, which attains spatial consistency across different viewpoints and allows us to reconstruct a reasonable coarse 4D field. Then, MVTokenFlow further regenerates all the multiview images using the rendered 2D flows as guidance. The 2D flows effectively associate pixels from different timesteps and improve the temporal consistency by reusing tokens in the regeneration process. Finally, the regenerated images are spatiotemporally consistent and utilized to refine the coarse 4D field to get a high-quality 4D field. Experiments demonstrate the effectiveness of our design and show significantly improved quality than baseline methods.
Abstract:Large Language Models (LLMs) are widely applied in decision making, but their deployment is threatened by jailbreak attacks, where adversarial users manipulate model behavior to bypass safety measures. Existing defense mechanisms, such as safety fine-tuning and model editing, either require extensive parameter modifications or lack precision, leading to performance degradation on general tasks, which is unsuitable to post-deployment safety alignment. To address these challenges, we propose DELMAN (Dynamic Editing for LLMs JAilbreak DefeNse), a novel approach leveraging direct model editing for precise, dynamic protection against jailbreak attacks. DELMAN directly updates a minimal set of relevant parameters to neutralize harmful behaviors while preserving the model's utility. To avoid triggering a safe response in benign context, we incorporate KL-divergence regularization to ensure the updated model remains consistent with the original model when processing benign queries. Experimental results demonstrate that DELMAN outperforms baseline methods in mitigating jailbreak attacks while preserving the model's utility, and adapts seamlessly to new attack instances, providing a practical and efficient solution for post-deployment model protection.
Abstract:Pre-training large language models (LLMs) on vast text corpora enhances natural language processing capabilities but risks encoding social biases, particularly gender bias. While parameter-modification methods like fine-tuning mitigate bias, they are resource-intensive, unsuitable for closed-source models, and lack adaptability to evolving societal norms. Instruction-based approaches offer flexibility but often compromise task performance. To address these limitations, we propose $\textit{FaIRMaker}$, an automated and model-independent framework that employs an $\textbf{auto-search and refinement}$ paradigm to adaptively generate Fairwords, which act as instructions integrated into input queries to reduce gender bias and enhance response quality. Extensive experiments demonstrate that $\textit{FaIRMaker}$ automatically searches for and dynamically refines Fairwords, effectively mitigating gender bias while preserving task integrity and ensuring compatibility with both API-based and open-source LLMs.
Abstract:3D affordance segmentation aims to link human instructions to touchable regions of 3D objects for embodied manipulations. Existing efforts typically adhere to single-object, single-affordance paradigms, where each affordance type or explicit instruction strictly corresponds to a specific affordance region and are unable to handle long-horizon tasks. Such a paradigm cannot actively reason about complex user intentions that often imply sequential affordances. In this paper, we introduce the Sequential 3D Affordance Reasoning task, which extends the traditional paradigm by reasoning from cumbersome user intentions and then decomposing them into a series of segmentation maps. Toward this, we construct the first instruction-based affordance segmentation benchmark that includes reasoning over both single and sequential affordances, comprising 180K instruction-point cloud pairs. Based on the benchmark, we propose our model, SeqAfford, to unlock the 3D multi-modal large language model with additional affordance segmentation abilities, which ensures reasoning with world knowledge and fine-grained affordance grounding in a cohesive framework. We further introduce a multi-granular language-point integration module to endow 3D dense prediction. Extensive experimental evaluations show that our model excels over well-established methods and exhibits open-world generalization with sequential reasoning abilities.
Abstract:Recent advancements in large-scale foundational models have sparked widespread interest in training highly proficient large vision models. A common consensus revolves around the necessity of aggregating extensive, high-quality annotated data. However, given the inherent challenges in annotating dense tasks in computer vision, such as object detection and segmentation, a practical strategy is to combine and leverage all available data for training purposes. In this work, we propose Plain-Det, which offers flexibility to accommodate new datasets, robustness in performance across diverse datasets, training efficiency, and compatibility with various detection architectures. We utilize Def-DETR, with the assistance of Plain-Det, to achieve a mAP of 51.9 on COCO, matching the current state-of-the-art detectors. We conduct extensive experiments on 13 downstream datasets and Plain-Det demonstrates strong generalization capability. Code is release at https://github.com/ChengShiest/Plain-Det
Abstract:Unsupervised 3D instance segmentation aims to segment objects from a 3D point cloud without any annotations. Existing methods face the challenge of either too loose or too tight clustering, leading to under-segmentation or over-segmentation. To address this issue, we propose Part2Object, hierarchical clustering with object guidance. Part2Object employs multi-layer clustering from points to object parts and objects, allowing objects to manifest at any layer. Additionally, it extracts and utilizes 3D objectness priors from temporally consecutive 2D RGB frames to guide the clustering process. Moreover, we propose Hi-Mask3D to support hierarchical 3D object part and instance segmentation. By training Hi-Mask3D on the objects and object parts extracted from Part2Object, we achieve consistent and superior performance compared to state-of-the-art models in various settings, including unsupervised instance segmentation, data-efficient fine-tuning, and cross-dataset generalization. Code is release at https://github.com/ChengShiest/Part2Object
Abstract:Foundation models, pre-trained on a large amount of data have demonstrated impressive zero-shot capabilities in various downstream tasks. However, in object detection and instance segmentation, two fundamental computer vision tasks heavily reliant on extensive human annotations, foundation models such as SAM and DINO struggle to achieve satisfactory performance. In this study, we reveal that the devil is in the object boundary, \textit{i.e.}, these foundation models fail to discern boundaries between individual objects. For the first time, we probe that CLIP, which has never accessed any instance-level annotations, can provide a highly beneficial and strong instance-level boundary prior in the clustering results of its particular intermediate layer. Following this surprising observation, we propose $\textbf{Zip}$ which $\textbf{Z}$ips up CL$\textbf{ip}$ and SAM in a novel classification-first-then-discovery pipeline, enabling annotation-free, complex-scene-capable, open-vocabulary object detection and instance segmentation. Our Zip significantly boosts SAM's mask AP on COCO dataset by 12.5% and establishes state-of-the-art performance in various settings, including training-free, self-training, and label-efficient finetuning. Furthermore, annotation-free Zip even achieves comparable performance to the best-performing open-vocabulary object detecters using base annotations. Code is released at https://github.com/ChengShiest/Zip-Your-CLIP
Abstract:Referring image segmentation (RIS) aims to precisely segment referents in images through corresponding natural language expressions, yet relying on cost-intensive mask annotations. Weakly supervised RIS thus learns from image-text pairs to pixel-level semantics, which is challenging for segmenting fine-grained masks. A natural approach to enhancing segmentation precision is to empower weakly supervised RIS with the image segmentation foundation model SAM. Nevertheless, we observe that simply integrating SAM yields limited benefits and can even lead to performance regression due to the inevitable noise issues and challenges in excessive focus on object parts. In this paper, we present an innovative framework, Point PrompTing (PPT), incorporated with the proposed multi-source curriculum learning strategy to address these challenges. Specifically, the core of PPT is a point generator that not only harnesses CLIP's text-image alignment capability and SAM's powerful mask generation ability but also generates negative point prompts to address the noisy and excessive focus issues inherently and effectively. In addition, we introduce a curriculum learning strategy with object-centric images to help PPT gradually learn from simpler yet precise semantic alignment to more complex RIS. Experiments demonstrate that our PPT significantly and consistently outperforms prior weakly supervised techniques on mIoU by 11.34%, 14.14%, and 6.97% across RefCOCO, RefCOCO+, and G-Ref, respectively.