NUS
Abstract:Existing multimodal large language models for long-video understanding predominantly rely on uniform sampling and single-turn inference, limiting their ability to identify sparse yet critical evidence amid extensive redundancy. We introduce Video-o3, a novel framework that supports iterative discovery of salient visual clues, fine-grained inspection of key segments, and adaptive termination once sufficient evidence is acquired. Technically, we address two core challenges in interleaved tool invocation. First, to mitigate attention dispersion induced by the heterogeneity of reasoning and tool-calling, we propose Task-Decoupled Attention Masking, which isolates per-step concentration while preserving shared global context. Second, to control context length growth in multi-turn interactions, we introduce a Verifiable Trajectory-Guided Reward that balances exploration coverage with reasoning efficiency. To support training at scale, we further develop a data synthesis pipeline and construct Seeker-173K, comprising 173K high-quality tool-interaction trajectories for effective supervised and reinforcement learning. Extensive experiments show that Video-o3 substantially outperforms state-of-the-art methods, achieving 72.1% accuracy on MLVU and 46.5% on Video-Holmes. These results demonstrate Video-o3's strong multi-hop evidence-seeking and reasoning capabilities, and validate the effectiveness of native tool invocation in long-video scenarios.
Abstract:While Large Language Models excel at semantic tasks, they face a critical bottleneck in financial quantitative reasoning, frequently suffering from "Arithmetic Hallucinations" and a systemic failure mode we term "Cognitive Collapse". To strictly quantify this phenomenon, we introduce the Cognitive Complexity Benchmark (CCB), a robust evaluation framework grounded in a dataset constructed from 95 real-world Chinese A-share annual reports. Unlike traditional datasets, the CCB stratifies financial queries into a three-dimensional taxonomy, Data Source, Mapping Difficulty, and Result Unit, enabling the precise diagnosis of reasoning degradation in high-cognitive-load scenarios. To address these failures, we propose the Iterative Dual-Phase Financial-PoT framework. This neuro-symbolic architecture enforces a strict architectural decoupling: it first isolates semantic variable extraction and logic formulation, then offloads computation to an iterative, self-correcting Python sandbox to ensure deterministic execution. Evaluation on the CCB demonstrates that while standard Chain-of-Thought falters on complex tasks, our approach offers superior robustness, elevating the Qwen3-235B model's average accuracy from 59.7\% to 67.3\% and achieving gains of up to 10-fold in high-complexity reasoning tasks. These findings suggest that architectural decoupling is a critical enabling factor for improving reliability in financial reasoning tasks, providing a transferable architectural insight for precision-critical domains that require tight alignment between semantic understanding and quantitative computation.
Abstract:While reinforcement learning with verifiable rewards (RLVR) has advanced LLM reasoning in structured domains like mathematics and programming, its application to general-domain reasoning tasks remains challenging due to the absence of verifiable reward signals. To this end, methods like Reinforcement Learning with Reference Probability Reward (RLPR) have emerged, leveraging the probability of generating the final answer as a reward signal. However, these outcome-focused approaches neglect crucial step-by-step supervision of the reasoning process itself. To address this gap, we introduce Probabilistic Process Supervision (P2S), a novel self-supervision framework that provides fine-grained process rewards without requiring a separate reward model or human-annotated reasoning steps. During reinforcement learning, P2S synthesizes and filters a high-quality reference reasoning chain (gold-CoT). The core of our method is to calculate a Path Faithfulness Reward (PFR) for each reasoning step, which is derived from the conditional probability of generating the gold-CoT's suffix, given the model's current reasoning prefix. Crucially, this PFR can be flexibly integrated with any outcome-based reward, directly tackling the reward sparsity problem by providing dense guidance. Extensive experiments on reading comprehension and medical Question Answering benchmarks show that P2S significantly outperforms strong baselines.
Abstract:Discrete Speech Representation Tokens (DSRTs) have become a foundational component in speech generation. While prior work has extensively studied phonetic and speaker information in DSRTs, how accent information is encoded in DSRTs remains largely unexplored. In this paper, we present the first systematic investigation of accent information in DSRTs. We propose a unified evaluation framework that measures both accessibility of accent information via a novel Accent ABX task and recoverability via cross-accent Voice Conversion (VC) resynthesis. Using this framework, we analyse DSRTs derived from a variety of speech encoders. Our results reveal that accent information is substantially reduced when ASR supervision is used to fine-tune the encoder, but cannot be effectively disentangled from phonetic and speaker information through naive codebook size reduction. Based on these findings, we propose new content-only and content-accent DSRTs that significantly outperform existing designs in controllable accent generation. Our work highlights the importance of accent-aware evaluation and provides practical guidance for designing DSRTs for accent-controlled speech generation.
Abstract:The rise of Large Language Models (LLMs) has enabled a new paradigm for bridging authorial intent and player agency in interactive narrative. We consider this paradigm through the example of Dramamancer, a system that uses an LLM to transform author-created story schemas into player-driven playthroughs. This extended abstract outlines some design techniques and evaluation considerations associated with this system.
Abstract:Large language models (LLMs) show promise in clinical decision support yet risk acquiescing to patient pressure for inappropriate care. We introduce SycoEval-EM, a multi-agent simulation framework evaluating LLM robustness through adversarial patient persuasion in emergency medicine. Across 20 LLMs and 1,875 encounters spanning three Choosing Wisely scenarios, acquiescence rates ranged from 0-100\%. Models showed higher vulnerability to imaging requests (38.8\%) than opioid prescriptions (25.0\%), with model capability poorly predicting robustness. All persuasion tactics proved equally effective (30.0-36.0\%), indicating general susceptibility rather than tactic-specific weakness. Our findings demonstrate that static benchmarks inadequately predict safety under social pressure, necessitating multi-turn adversarial testing for clinical AI certification.
Abstract:Backdoor attacks embed hidden malicious behaviors in reinforcement learning (RL) policies and activate them using triggers at test time. Most existing attacks are validated only in simulation, while their effectiveness in real-world robotic systems remains unclear. In physical deployment, safety-constrained control pipelines such as velocity limiting, action smoothing, and collision avoidance suppress abnormal actions, causing strong attenuation of conventional backdoor attacks. We study this previously overlooked problem and propose a diffusion-guided backdoor attack framework (DGBA) for real-world RL. We design small printable visual patch triggers placed on the floor and generate them using a conditional diffusion model that produces diverse patch appearances under real-world visual variations. We treat the robot control stack as a black-box system. We further introduce an advantage-based poisoning strategy that injects triggers only at decision-critical training states. We evaluate our method on a TurtleBot3 mobile robot and demonstrate reliable activation of targeted attacks while preserving normal task performance. Demo videos and code are available in the supplementary material.
Abstract:As hubs of human activity, urban surfaces consist of a wealth of semantic entities. Segmenting these various entities from satellite imagery is crucial for a range of downstream applications. Current advanced segmentation models can reliably segment entities defined by physical attributes (e.g., buildings, water bodies) but still struggle with socially defined categories (e.g., schools, parks). In this work, we achieve socio-semantic segmentation by vision-language model reasoning. To facilitate this, we introduce the Urban Socio-Semantic Segmentation dataset named SocioSeg, a new resource comprising satellite imagery, digital maps, and pixel-level labels of social semantic entities organized in a hierarchical structure. Additionally, we propose a novel vision-language reasoning framework called SocioReasoner that simulates the human process of identifying and annotating social semantic entities via cross-modal recognition and multi-stage reasoning. We employ reinforcement learning to optimize this non-differentiable process and elicit the reasoning capabilities of the vision-language model. Experiments demonstrate our approach's gains over state-of-the-art models and strong zero-shot generalization. Our dataset and code are available in https://github.com/AMAP-ML/SocioReasoner.
Abstract:Audio-visual embodied navigation aims to enable an agent to autonomously localize and reach a sound source in unseen 3D environments by leveraging auditory cues. The key challenge of this task lies in effectively modeling the interaction between heterogeneous features during multimodal fusion, so as to avoid single-modality dominance or information degradation, particularly in cross-domain scenarios. To address this, we propose a Cross-Modal Residual Fusion Network, which introduces bidirectional residual interactions between audio and visual streams to achieve complementary modeling and fine-grained alignment, while maintaining the independence of their representations. Unlike conventional methods that rely on simple concatenation or attention gating, CRFN explicitly models cross-modal interactions via residual connections and incorporates stabilization techniques to improve convergence and robustness. Experiments on the Replica and Matterport3D datasets demonstrate that CRFN significantly outperforms state-of-the-art fusion baselines and achieves stronger cross-domain generalization. Notably, our experiments also reveal that agents exhibit differentiated modality dependence across different datasets. The discovery of this phenomenon provides a new perspective for understanding the cross-modal collaboration mechanism of embodied agents.
Abstract:Open-source scientific software is abundant, yet most tools remain difficult to compile, configure, and reuse, sustaining a small-workshop mode of scientific computing. This deployment bottleneck limits reproducibility, large-scale evaluation, and the practical integration of scientific tools into modern AI-for-Science (AI4S) and agentic workflows. We present Deploy-Master, a one-stop agentic workflow for large-scale tool discovery, build specification inference, execution-based validation, and publication. Guided by a taxonomy spanning 90+ scientific and engineering domains, our discovery stage starts from a recall-oriented pool of over 500,000 public repositories and progressively filters it to 52,550 executable tool candidates under license- and quality-aware criteria. Deploy-Master transforms heterogeneous open-source repositories into runnable, containerized capabilities grounded in execution rather than documentation claims. In a single day, we performed 52,550 build attempts and constructed reproducible runtime environments for 50,112 scientific tools. Each successful tool is validated by a minimal executable command and registered in SciencePedia for search and reuse, enabling direct human use and optional agent-based invocation. Beyond delivering runnable tools, we report a deployment trace at the scale of 50,000 tools, characterizing throughput, cost profiles, failure surfaces, and specification uncertainty that become visible only at scale. These results explain why scientific software remains difficult to operationalize and motivate shared, observable execution substrates as a foundation for scalable AI4S and agentic science.