University of Bristol
Abstract:Japanese finance combines agglutinative, head-final linguistic structure, mixed writing systems, and high-context communication norms that rely on indirect expression and implicit commitment, posing a substantial challenge for LLMs. We introduce Ebisu, a benchmark for native Japanese financial language understanding, comprising two linguistically and culturally grounded, expert-annotated tasks: JF-ICR, which evaluates implicit commitment and refusal recognition in investor-facing Q&A, and JF-TE, which assesses hierarchical extraction and ranking of nested financial terminology from professional disclosures. We evaluate a diverse set of open-source and proprietary LLMs spanning general-purpose, Japanese-adapted, and financial models. Results show that even state-of-the-art systems struggle on both tasks. While increased model scale yields limited improvements, language- and domain-specific adaptation does not reliably improve performance, leaving substantial gaps unresolved. Ebisu provides a focused benchmark for advancing linguistically and culturally grounded financial NLP. All datasets and evaluation scripts are publicly released.
Abstract:Transformer-based foundation models have achieved remarkable progress in tasks such as time-series forecasting and image segmentation. However, they frequently suffer from error accumulation in multivariate long-sequence prediction and exhibit vulnerability to out-of-distribution samples in image-related tasks. Furthermore, these challenges become particularly pronounced in large-scale Web data analysis tasks, which typically involve complex temporal patterns and multimodal features. This complexity substantially increases optimization difficulty, rendering models prone to stagnation at saddle points within high-dimensional parameter spaces. To address these issues, we propose a lightweight Transformer architecture in conjunction with a novel Escape-Explore Optimizer (EEO). The optimizer enhances both exploration and generalization while effectively avoiding sharp minima and saddle-point traps. Experimental results show that, in representative Web data scenarios, our method achieves performance on par with state-of-the-art models across 11 time-series benchmark datasets and the Synapse medical image segmentation task. Moreover, it demonstrates superior generalization and stability, thereby validating its potential as a versatile cross-task foundation model for Web-scale data mining and analysis.
Abstract:Spatial covariance matrices of EEG signals are Symmetric Positive Definite (SPD) and lie on a Riemannian manifold, yet the theoretical connection between embedding geometry and optimization dynamics remains unexplored. We provide a formal analysis linking embedding choice to gradient conditioning and numerical stability for SPD manifolds, establishing three theoretical results: (1) BWSPD's $\sqrtκ$ gradient conditioning (vs $κ$ for Log-Euclidean) via Daleckii-Kreĭn matrices provides better gradient conditioning on high-dimensional inputs ($d \geq 22$), with this advantage reducing on low-dimensional inputs ($d \leq 8$) where eigendecomposition overhead dominates; (2) Embedding-Space Batch Normalization (BN-Embed) approximates Riemannian normalization up to $O(\varepsilon^2)$ error, yielding $+26\%$ accuracy on 56-channel ERP data but negligible effect on 8-channel SSVEP data, matching the channel-count-dependent prediction; (3) bi-Lipschitz bounds prove BWSPD tokens preserve manifold distances with distortion governed solely by the condition ratio $κ$. We validate these predictions via a unified Transformer framework comparing BWSPD, Log-Euclidean, and Euclidean embeddings within identical architecture across 1,500+ runs on three EEG paradigms (motor imagery, ERP, SSVEP; 36 subjects). Our Log-Euclidean Transformer achieves state-of-the-art performance on all datasets, substantially outperforming classical Riemannian classifiers and recent SPD baselines, while BWSPD offers competitive accuracy with similar training time.
Abstract:As nuclear facilities experience digital transformation and advanced reactor development, AI integration, cyber-physical security, and other emerging technologies such as autonomous robot operations are increasingly developed. However, evaluation and deployment is challenged by the lack of dedicated virtual testbeds. The Immersive Framework for Advanced Nuclear (iFAN) ecosystem is developed, a comprehensive digital twin framework with a realistic 3D environment with physics-based simulations. The iFAN ecosystem serves as a high-fidelity virtual testbed for plant operation, cybersecurity, physical security, and robotic operation, as it provides real-time data exchange for pre-deployment verification. Core features include virtual reality, reinforcement learning, radiation simulation, and cyber-physical security. In addition, the paper investigates various applications through potential operational scenarios. The iFAN ecosystem provides a versatile and secure architecture for validating the next generation of autonomous and cyber-resilient nuclear operations.
Abstract:Live video denoising under realistic, multi-component sensor noise remains challenging for applications such as autofocus, autonomous driving, and surveillance. We propose PocketDVDNet, a lightweight video denoiser developed using our model compression framework that combines sparsity-guided structured pruning, a physics-informed noise model, and knowledge distillation to achieve high-quality restoration with reduced resource demands. Starting from a reference model, we induce sparsity, apply targeted channel pruning, and retrain a teacher on realistic multi-component noise. The student network learns implicit noise handling, eliminating the need for explicit noise-map inputs. PocketDVDNet reduces the original model size by 74% while improving denoising quality and processing 5-frame patches in real-time. These results demonstrate that aggressive compression, combined with domain-adapted distillation, can reconcile performance and efficiency for practical, real-time video denoising.
Abstract:We present SpatialMem, a memory-centric system that unifies 3D geometry, semantics, and language into a single, queryable representation. Starting from casually captured egocentric RGB video, SpatialMem reconstructs metrically scaled indoor environments, detects structural 3D anchors (walls, doors, windows) as the first-layer scaffold, and populates a hierarchical memory with open-vocabulary object nodes -- linking evidence patches, visual embeddings, and two-layer textual descriptions to 3D coordinates -- for compact storage and fast retrieval. This design enables interpretable reasoning over spatial relations (e.g., distance, direction, visibility) and supports downstream tasks such as language-guided navigation and object retrieval without specialized sensors. Experiments across three real-life indoor scenes demonstrate that SpatialMem maintains strong anchor-description-level navigation completion and hierarchical retrieval accuracy under increasing clutter and occlusion, offering an efficient and extensible framework for embodied spatial intelligence.
Abstract:Generative models for financial time series often create data that look realistic and even reproduce stylized facts such as fat tails or volatility clustering. However, these apparent successes break down under trading backtests: models like GANs or WGAN-GP frequently collapse, yielding extreme and unrealistic results that make the synthetic data unusable in practice. We identify the root cause in the neglect of financial asymmetry and rare tail events, which strongly affect market risk but are often overlooked by objectives focusing on distribution matching. To address this, we introduce the Stylized Facts Alignment GAN (SFAG), which converts key stylized facts into differentiable structural constraints and jointly optimizes them with adversarial loss. This multi-constraint design ensures that generated series remain aligned with market dynamics not only in plots but also in backtesting. Experiments on the Shanghai Composite Index (2004--2024) show that while baseline GANs produce unstable and implausible trading outcomes, SFAG generates synthetic data that preserve stylized facts and support robust momentum strategy performance. Our results highlight that structure-preserving objectives are essential to bridge the gap between superficial realism and practical usability in financial generative modeling.
Abstract:Despite recent advances in multimodal large language models (MLLMs), their ability to understand and interact with music remains limited. Music understanding requires grounded reasoning over symbolic scores and expressive performance audio, which general-purpose MLLMs often fail to handle due to insufficient perceptual grounding. We introduce MuseAgent, a music-centric multimodal agent that augments language models with structured symbolic representations derived from sheet music images and performance audio. By integrating optical music recognition and automatic music transcription modules, MuseAgent enables multi-step reasoning and interaction over fine-grained musical content. To systematically evaluate music understanding capabilities, we further propose MuseBench, a benchmark covering music theory reasoning, score interpretation, and performance-level analysis across text, image, and audio modalities. Experiments show that existing MLLMs perform poorly on these tasks, while MuseAgent achieves substantial improvements, highlighting the importance of structured multimodal grounding for interactive music understanding.
Abstract:Multimodal image registration between diffusion MRI (dMRI) and T1-weighted (T1w) MRI images is a critical step for aligning diffusion-weighted imaging (DWI) data with structural anatomical space. Traditional registration methods often struggle to ensure accuracy due to the large intensity differences between diffusion data and high-resolution anatomical structures. This paper proposes an unsupervised registration framework based on a generative registration network, which transforms the original multimodal registration problem between b0 and T1w images into a unimodal registration task between a generated image and the real T1w image. This effectively reduces the complexity of cross-modal registration. The framework first employs an image synthesis model to generate images with T1w-like contrast, and then learns a deformation field from the generated image to the fixed T1w image. The registration network jointly optimizes local structural similarity and cross-modal statistical dependency to improve deformation estimation accuracy. Experiments conducted on two independent datasets demonstrate that the proposed method outperforms several state-of-the-art approaches in multimodal registration tasks.
Abstract:Whole-brain parcellation from MRI is a critical yet challenging task due to the complexity of subdividing the brain into numerous small, irregular shaped regions. Traditionally, template-registration methods were used, but recent advances have shifted to deep learning for faster workflows. While large models like the Segment Anything Model (SAM) offer transferable feature representations, they are not tailored for the high precision required in brain parcellation. To address this, we propose BrainSegNet, a novel framework that adapts SAM for accurate whole-brain parcellation into 95 regions. We enhance SAM by integrating U-Net skip connections and specialized modules into its encoder and decoder, enabling fine-grained anatomical precision. Key components include a hybrid encoder combining U-Net skip connections with SAM's transformer blocks, a multi-scale attention decoder with pyramid pooling for varying-sized structures, and a boundary refinement module to sharpen edges. Experimental results on the Human Connectome Project (HCP) dataset demonstrate that BrainSegNet outperforms several state-of-the-art methods, achieving higher accuracy and robustness in complex, multi-label parcellation.