University of Bristol
Abstract:Speech-driven gesture generation using transformer-based generative models represents a rapidly advancing area within virtual human creation. However, existing models face significant challenges due to their quadratic time and space complexities, limiting scalability and efficiency. To address these limitations, we introduce DiM-Gestor, an innovative end-to-end generative model leveraging the Mamba-2 architecture. DiM-Gestor features a dual-component framework: (1) a fuzzy feature extractor and (2) a speech-to-gesture mapping module, both built on the Mamba-2. The fuzzy feature extractor, integrated with a Chinese Pre-trained Model and Mamba-2, autonomously extracts implicit, continuous speech features. These features are synthesized into a unified latent representation and then processed by the speech-to-gesture mapping module. This module employs an Adaptive Layer Normalization (AdaLN)-enhanced Mamba-2 mechanism to uniformly apply transformations across all sequence tokens. This enables precise modeling of the nuanced interplay between speech features and gesture dynamics. We utilize a diffusion model to train and infer diverse gesture outputs. Extensive subjective and objective evaluations conducted on the newly released Chinese Co-Speech Gestures dataset corroborate the efficacy of our proposed model. Compared with Transformer-based architecture, the assessments reveal that our approach delivers competitive results and significantly reduces memory usage, approximately 2.4 times, and enhances inference speeds by 2 to 4 times. Additionally, we released the CCG dataset, a Chinese Co-Speech Gestures dataset, comprising 15.97 hours (six styles across five scenarios) of 3D full-body skeleton gesture motion performed by professional Chinese TV broadcasters.
Abstract:Super-resolution (SR) is a key technique for improving the visual quality of video content by increasing its spatial resolution while reconstructing fine details. SR has been employed in many applications including video streaming, where compressed low-resolution content is typically transmitted to end users and then reconstructed with a higher resolution and enhanced quality. To support real-time playback, it is important to implement fast SR models while preserving reconstruction quality; however most existing solutions, in particular those based on complex deep neural networks, fail to do so. To address this issue, this paper proposes a low-complexity SR method, RTSR, designed to enhance the visual quality of compressed video content, focusing on resolution up-scaling from a) 360p to 1080p and from b) 540p to 4K. The proposed approach utilizes a CNN-based network architecture, which was optimized for AV1 (SVT)-encoded content at various quantization levels based on a dual-teacher knowledge distillation method. This method was submitted to the AIM 2024 Video Super-Resolution Challenge, specifically targeting the Efficient/Mobile Real-Time Video Super-Resolution competition. It achieved the best trade-off between complexity and coding performance (measured in PSNR, SSIM and VMAF) among all six submissions. The code will be available soon.
Abstract:Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has several appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. 4) Versatile Benchmarking: VBench++ supports evaluating text-to-video and image-to-video. We introduce a high-quality Image Suite with an adaptive aspect ratio to enable fair evaluations across different image-to-video generation settings. Beyond assessing technical quality, VBench++ evaluates the trustworthiness of video generative models, providing a more holistic view of model performance. 5) Full Open-Sourcing: We fully open-source VBench++ and continually add new video generation models to our leaderboard to drive forward the field of video generation.
Abstract:Event cameras, when combined with inertial sensors, show significant potential for motion estimation in challenging scenarios, such as high-speed maneuvers and low-light environments. There are many methods for producing such estimations, but most boil down to a synchronous discrete-time fusion problem. However, the asynchronous nature of event cameras and their unique fusion mechanism with inertial sensors remain underexplored. In this paper, we introduce a monocular event-inertial odometry method called AsynEIO, designed to fuse asynchronous event and inertial data within a unified Gaussian Process (GP) regression framework. Our approach incorporates an event-driven frontend that tracks feature trajectories directly from raw event streams at a high temporal resolution. These tracked feature trajectories, along with various inertial factors, are integrated into the same GP regression framework to enable asynchronous fusion. With deriving analytical residual Jacobians and noise models, our method constructs a factor graph that is iteratively optimized and pruned using a sliding-window optimizer. Comparative assessments highlight the performance of different inertial fusion strategies, suggesting optimal choices for varying conditions. Experimental results on both public datasets and our own event-inertial sequences indicate that AsynEIO outperforms existing methods, especially in high-speed and low-illumination scenarios.
Abstract:Retrieval and recommendation are two essential tasks in modern search tools. This paper introduces a novel retrieval-reranking framework leveraging Large Language Models (LLMs) to enhance the spatiotemporal and semantic associated mining and recommendation of relevant unusual climate and environmental events described in news articles and web posts. This framework uses advanced natural language processing techniques to address the limitations of traditional manual curation methods in terms of high labor cost and lack of scalability. Specifically, we explore an optimized solution to employ cutting-edge embedding models for semantically analyzing spatiotemporal events (news) and propose a Geo-Time Re-ranking (GT-R) strategy that integrates multi-faceted criteria including spatial proximity, temporal association, semantic similarity, and category-instructed similarity to rank and identify similar spatiotemporal events. We apply the proposed framework to a dataset of four thousand Local Environmental Observer (LEO) Network events, achieving top performance in recommending similar events among multiple cutting-edge dense retrieval models. The search and recommendation pipeline can be applied to a wide range of similar data search tasks dealing with geospatial and temporal data. We hope that by linking relevant events, we can better aid the general public to gain an enhanced understanding of climate change and its impact on different communities.
Abstract:The advances in immersive technologies and 3D reconstruction have enabled the creation of digital replicas of real-world objects and environments with fine details. These processes generate vast amounts of 3D data, requiring more efficient compression methods to satisfy the memory and bandwidth constraints associated with data storage and transmission. However, the development and validation of efficient 3D data compression methods are constrained by the lack of comprehensive and high-quality volumetric video datasets, which typically require much more effort to acquire and consume increased resources compared to 2D image and video databases. To bridge this gap, we present an open multi-view volumetric human dataset, denoted BVI-CR, which contains 18 multi-view RGB-D captures and their corresponding textured polygonal meshes, depicting a range of diverse human actions. Each video sequence contains 10 views in 1080p resolution with durations between 10-15 seconds at 30FPS. Using BVI-CR, we benchmarked three conventional and neural coordinate-based multi-view video compression methods, following the MPEG MIV Common Test Conditions, and reported their rate quality performance based on various quality metrics. The results show the great potential of neural representation based methods in volumetric video compression compared to conventional video coding methods (with an up to 38\% average coding gain in PSNR). This dataset provides a development and validation platform for a variety of tasks including volumetric reconstruction, compression, and quality assessment. The database will be shared publicly at \url{https://github.com/fan-aaron-zhang/bvi-cr}.
Abstract:White matter alterations are increasingly implicated in neurological diseases and their progression. International-scale studies use diffusion-weighted magnetic resonance imaging (DW-MRI) to qualitatively identify changes in white matter microstructure and connectivity. Yet, quantitative analysis of DW-MRI data is hindered by inconsistencies stemming from varying acquisition protocols. There is a pressing need to harmonize the preprocessing of DW-MRI datasets to ensure the derivation of robust quantitative diffusion metrics across acquisitions. In the MICCAI-CDMRI 2023 QuantConn challenge, participants were provided raw data from the same individuals collected on the same scanner but with two different acquisitions and tasked with preprocessing the DW-MRI to minimize acquisition differences while retaining biological variation. Submissions are evaluated on the reproducibility and comparability of cross-acquisition bundle-wise microstructure measures, bundle shape features, and connectomics. The key innovations of the QuantConn challenge are that (1) we assess bundles and tractography in the context of harmonization for the first time, (2) we assess connectomics in the context of harmonization for the first time, and (3) we have 10x additional subjects over prior harmonization challenge, MUSHAC and 100x over SuperMUDI. We find that bundle surface area, fractional anisotropy, connectome assortativity, betweenness centrality, edge count, modularity, nodal strength, and participation coefficient measures are most biased by acquisition and that machine learning voxel-wise correction, RISH mapping, and NeSH methods effectively reduce these biases. In addition, microstructure measures AD, MD, RD, bundle length, connectome density, efficiency, and path length are least biased by these acquisition differences.
Abstract:Tractography fiber clustering using diffusion MRI (dMRI) is a crucial strategy for white matter (WM) parcellation. Current methods primarily use the geometric information of fibers (i.e., the spatial trajectories) to group similar fibers into clusters, overlooking the important functional signals present along the fiber tracts. There is increasing evidence that neural activity in the WM can be measured using functional MRI (fMRI), offering potentially valuable multimodal information for fiber clustering. In this paper, we develop a novel deep learning fiber clustering framework, namely Deep Multi-view Fiber Clustering (DMVFC), that uses joint dMRI and fMRI data to enable functionally consistent WM parcellation. DMVFC can effectively integrate the geometric characteristics of the WM fibers with the fMRI BOLD signals along the fiber tracts. It includes two major components: 1) a multi-view pretraining module to compute embedding features from fiber geometric information and functional signals separately, and 2) a collaborative fine-tuning module to simultaneously refine the two kinds of embeddings. In the experiments, we compare DMVFC with two state-of-the-art fiber clustering methods and demonstrate superior performance in achieving functionally meaningful and consistent WM parcellation results.
Abstract:With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant. These capabilities are crucial for enhancing the performance of AI systems across a wide range of tasks. However, there is currently no comprehensive survey that systematically investigates AI's long-term memory capabilities, formulates a theoretical framework, and inspires the development of next-generation AI long-term memory systems. This paper begins by systematically introducing the mechanisms of human long-term memory, then explores AI long-term memory mechanisms, establishing a mapping between the two. Based on the mapping relationships identified, we extend the current cognitive architectures and propose the Cognitive Architecture of Self-Adaptive Long-term Memory (SALM). SALM provides a theoretical framework for the practice of AI long-term memory and holds potential for guiding the creation of next-generation long-term memory driven AI systems. Finally, we delve into the future directions and application prospects of AI long-term memory.
Abstract:Image Signal Processors (ISPs) convert raw sensor signals into digital images, which significantly influence the image quality and the performance of downstream computer vision tasks. Designing ISP pipeline and tuning ISP parameters are two key steps for building an imaging and vision system. To find optimal ISP configurations, recent works use deep neural networks as a proxy to search for ISP parameters or ISP pipelines. However, these methods are primarily designed to maximize the image quality, which are sub-optimal in the performance of high-level computer vision tasks such as detection, recognition, and tracking. Moreover, after training, the learned ISP pipelines are mostly fixed at the inference time, whose performance degrades in dynamic scenes. To jointly optimize ISP structures and parameters, we propose AdaptiveISP, a task-driven and scene-adaptive ISP. One key observation is that for the majority of input images, only a few processing modules are needed to improve the performance of downstream recognition tasks, and only a few inputs require more processing. Based on this, AdaptiveISP utilizes deep reinforcement learning to automatically generate an optimal ISP pipeline and the associated ISP parameters to maximize the detection performance. Experimental results show that AdaptiveISP not only surpasses the prior state-of-the-art methods for object detection but also dynamically manages the trade-off between detection performance and computational cost, especially suitable for scenes with large dynamic range variations. Project website: https://openimaginglab.github.io/AdaptiveISP/.