Abstract:Autonomous path planning algorithms are significant to planetary exploration rovers, since relying on commands from Earth will heavily reduce their efficiency of executing exploration missions. This paper proposes a novel learning-based algorithm to deal with global path planning problem for planetary exploration rovers. Specifically, a novel deep convolutional neural network with double branches (DB-CNN) is designed and trained, which can plan path directly from orbital images of planetary surfaces without implementing environment mapping. Moreover, the planning procedure requires no prior knowledge about planetary surface terrains. Finally, experimental results demonstrate that DB-CNN achieves better performance on global path planning and faster convergence during training compared with the existing Value Iteration Network (VIN).
Abstract:In this paper, emerging deep learning techniques are leveraged to deal with Mars visual navigation problem. Specifically, to achieve precise landing and autonomous navigation, a novel deep neural network architecture with double branches and non-recurrent structure is designed, which can represent both global and local deep features of Martian environment images effectively. By employing this architecture, Mars rover can determine the optimal navigation policy to the target point directly from original Martian environment images. Moreover, compared with the existing state-of-the-art algorithm, the training time is reduced by 45.8%. Finally, experiment results demonstrate that the proposed deep neural network architecture achieves better performance and faster convergence than the existing ones and generalizes well to unknown environment.