University of Bristol
Abstract:Training reliable tool-augmented agents remains a significant challenge, largely due to the difficulty of credit assignment in multi-step reasoning. While process-level reward models offer a promising direction, existing LLM-based judges often produce noisy and inconsistent signals because they lack fine-grained, task-specific rubrics to distinguish high-level planning from low-level execution. In this work, we introduce SCRIBE (Skill-Conditioned Reward with Intermediate Behavioral Evaluation), a reinforcement learning framework that intervenes at a novel mid-level abstraction. SCRIBE grounds reward modeling in a curated library of skill prototypes, transforming open-ended LLM evaluation into a constrained verification problem. By routing each subgoal to a corresponding prototype, the reward model is equipped with precise, structured rubrics that substantially reduce reward variance. Experimental results show that SCRIBE achieves state-of-the-art performance across a range of reasoning and tool-use benchmarks. In particular, it improves the AIME25 accuracy of a Qwen3-4B model from 43.3% to 63.3%, and significantly increases success rates in complex multi-turn tool interactions. Further analysis of training dynamics reveals a co-evolution across abstraction levels, where mastery of mid-level skills consistently precedes the emergence of effective high-level planning behaviors. Finally, we demonstrate that SCRIBE is additive to low-level tool optimizations, providing a scalable and complementary pathway toward more autonomous and reliable tool-using agents.
Abstract:Training a unified model integrating video-to-audio (V2A), text-to-audio (T2A), and joint video-text-to-audio (VT2A) generation offers significant application flexibility, yet faces two unexplored foundational challenges: (1) the scarcity of high-quality audio captions with tight A-V-T alignment, leading to severe semantic conflict between multimodal conditions, and (2) cross-task and intra-task competition, manifesting as an adverse V2A-T2A performance trade-off and modality bias in the VT2A task. First, to address data scarcity, we introduce SoundAtlas, a large-scale dataset (470k pairs) that significantly outperforms existing benchmarks and even human experts in quality. Powered by a novel agentic pipeline, it integrates Vision-to-Language Compression to mitigate visual bias of MLLMs, a Junior-Senior Agent Handoff for a 5 times cost reduction, and rigorous Post-hoc Filtering to ensure fidelity. Consequently, SoundAtlas delivers semantically rich and temporally detailed captions with tight V-A-T alignment. Second, we propose Omni2Sound, a unified VT2A diffusion model supporting flexible input modalities. To resolve the inherent cross-task and intra-task competition, we design a three-stage multi-task progressive training schedule that converts cross-task competition into joint optimization and mitigates modality bias in the VT2A task, maintaining both audio-visual alignment and off-screen audio generation faithfulness. Finally, we construct VGGSound-Omni, a comprehensive benchmark for unified evaluation, including challenging off-screen tracks. With a standard DiT backbone, Omni2Sound achieves unified SOTA performance across all three tasks within a single model, demonstrating strong generalization across benchmarks with heterogeneous input conditions. The project page is at https://swapforward.github.io/Omni2Sound.




Abstract:3D Gaussian Splatting (3DGS) enhances 3D scene reconstruction through explicit representation and fast rendering, demonstrating potential benefits for various low-level vision tasks, including video compression. However, existing 3DGS-based video codecs generally exhibit more noticeable visual artifacts and relatively low compression ratios. In this paper, we specifically target the perceptual enhancement of 3DGS-based video compression, based on the assumption that artifacts from 3DGS rendering and quantization resemble noisy latents sampled during diffusion training. Building on this premise, we propose a content-adaptive framework, GFix, comprising a streamlined, single-step diffusion model that serves as an off-the-shelf neural enhancer. Moreover, to increase compression efficiency, We propose a modulated LoRA scheme that freezes the low-rank decompositions and modulates the intermediate hidden states, thereby achieving efficient adaptation of the diffusion backbone with highly compressible updates. Experimental results show that GFix delivers strong perceptual quality enhancement, outperforming GSVC with up to 72.1% BD-rate savings in LPIPS and 21.4% in FID.




Abstract:This paper presents a general-purpose video super-resolution (VSR) method, dubbed VSR-HE, specifically designed to enhance the perceptual quality of compressed content. Targeting scenarios characterized by heavy compression, the method upscales low-resolution videos by a ratio of four, from 180p to 720p or from 270p to 1080p. VSR-HE adopts hierarchical encoding transformer blocks and has been sophisticatedly optimized to eliminate a wide range of compression artifacts commonly introduced by H.265/HEVC encoding across various quantization parameter (QP) levels. To ensure robustness and generalization, the model is trained and evaluated under diverse compression settings, allowing it to effectively restore fine-grained details and preserve visual fidelity. The proposed VSR-HE has been officially submitted to the ICME 2025 Grand Challenge on VSR for Video Conferencing (Team BVI-VSR), under both the Track 1 (General-Purpose Real-World Video Content) and Track 2 (Talking Head Videos).




Abstract:Deep learning based image Super-Resolution (ISR) relies on large training datasets to optimize model generalization; this requires substantial computational and storage resources during training. While dataset condensation has shown potential in improving data efficiency and privacy for high-level computer vision tasks, it has not yet been fully exploited for ISR. In this paper, we propose a novel Instance Data Condensation (IDC) framework specifically for ISR, which achieves instance-level data condensation through Random Local Fourier Feature Extraction and Multi-level Feature Distribution Matching. This aims to optimize feature distributions at both global and local levels and obtain high-quality synthesized training content with fine detail. This framework has been utilized to condense the most commonly used training dataset for ISR, DIV2K, with a 10% condensation rate. The resulting synthetic dataset offers comparable or (in certain cases) even better performance compared to the original full dataset and excellent training stability when used to train various popular ISR models. To the best of our knowledge, this is the first time that a condensed/synthetic dataset (with a 10% data volume) has demonstrated such performance. The source code and the synthetic dataset have been made available at https://github.com/.
Abstract:Large language models (LLMs) like GPT-4 show potential for scaling motivational interviewing (MI) in addiction care, but require systematic evaluation of therapeutic capabilities. We present a computational framework assessing user-perceived quality (UPQ) through expected and unexpected MI behaviors. Analyzing human therapist and GPT-4 MI sessions via human-AI collaboration, we developed predictive models integrating deep learning and explainable AI to identify 17 MI-consistent (MICO) and MI-inconsistent (MIIN) behavioral metrics. A customized chain-of-thought prompt improved GPT-4's MI performance, reducing inappropriate advice while enhancing reflections and empathy. Although GPT-4 remained marginally inferior to therapists overall, it demonstrated superior advice management capabilities. The model achieved measurable quality improvements through prompt engineering, yet showed limitations in addressing complex emotional nuances. This framework establishes a pathway for optimizing LLM-based therapeutic tools through targeted behavioral metric analysis and human-AI co-evaluation. Findings highlight both the scalability potential and current constraints of LLMs in clinical communication applications.
Abstract:Vision-language-action (VLA) models have shown promise as generalist robotic policies by jointly leveraging visual, linguistic, and proprioceptive modalities to generate action trajectories. While recent benchmarks have advanced VLA research in domestic tasks, professional science-oriented domains remain underexplored. We introduce AutoBio, a simulation framework and benchmark designed to evaluate robotic automation in biology laboratory environments--an application domain that combines structured protocols with demanding precision and multimodal interaction. AutoBio extends existing simulation capabilities through a pipeline for digitizing real-world laboratory instruments, specialized physics plugins for mechanisms ubiquitous in laboratory workflows, and a rendering stack that support dynamic instrument interfaces and transparent materials through physically based rendering. Our benchmark comprises biologically grounded tasks spanning three difficulty levels, enabling standardized evaluation of language-guided robotic manipulation in experimental protocols. We provide infrastructure for demonstration generation and seamless integration with VLA models. Baseline evaluations with two SOTA VLA models reveal significant gaps in precision manipulation, visual reasoning, and instruction following in scientific workflows. By releasing AutoBio, we aim to catalyze research on generalist robotic systems for complex, high-precision, and multimodal professional environments. The simulator and benchmark are publicly available to facilitate reproducible research.
Abstract:While Large Reasoning Models (LRMs) have demonstrated success in complex reasoning tasks through long chain-of-thought (CoT) reasoning, their inference often involves excessively verbose reasoning traces, resulting in substantial inefficiency. To address this, we propose Distilled Reasoning Pruning (DRP), a hybrid framework that combines inference-time pruning with tuning-based distillation, two widely used strategies for efficient reasoning. DRP uses a teacher model to perform skill-aware step decomposition and content pruning, and then distills the pruned reasoning paths into a student model, enabling it to reason both efficiently and accurately. Across several challenging mathematical reasoning datasets, we find that models trained with DRP achieve substantial improvements in token efficiency without sacrificing accuracy. Specifically, DRP reduces average token usage on GSM8K from 917 to 328 while improving accuracy from 91.7% to 94.1%, and achieves a 43% token reduction on AIME with no performance drop. Further analysis shows that aligning the reasoning structure of training CoTs with the student's reasoning capacity is critical for effective knowledge transfer and performance gains.
Abstract:This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
Abstract:This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the $\operatorname{DIV2K\_LSDIR\_valid}$ dataset and 26.99 dB on the $\operatorname{DIV2K\_LSDIR\_test}$ dataset. A robust participation saw \textbf{244} registered entrants, with \textbf{43} teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.