Abstract:Convolutional neural networks (CNNs) have been widely used in efficient image super-resolution. However, for CNN-based methods, performance gains often require deeper networks and larger feature maps, which increase complexity and inference costs. Inspired by LoRA's success in fine-tuning large language models, we explore its application to lightweight models and propose Distillation-Supervised Convolutional Low-Rank Adaptation (DSCLoRA), which improves model performance without increasing architectural complexity or inference costs. Specifically, we integrate ConvLoRA into the efficient SR network SPAN by replacing the SPAB module with the proposed SConvLB module and incorporating ConvLoRA layers into both the pixel shuffle block and its preceding convolutional layer. DSCLoRA leverages low-rank decomposition for parameter updates and employs a spatial feature affinity-based knowledge distillation strategy to transfer second-order statistical information from teacher models (pre-trained SPAN) to student models (ours). This method preserves the core knowledge of lightweight models and facilitates optimal solution discovery under certain conditions. Experiments on benchmark datasets show that DSCLoRA improves PSNR and SSIM over SPAN while maintaining its efficiency and competitive image quality. Notably, DSCLoRA ranked first in the Overall Performance Track of the NTIRE 2025 Efficient Super-Resolution Challenge. Our code and models are made publicly available at https://github.com/Yaozzz666/DSCF-SR.
Abstract:Due to the disparity between real-world degradations in user-generated content(UGC) images and synthetic degradations, traditional super-resolution methods struggle to generalize effectively, necessitating a more robust approach to model real-world distortions. In this paper, we propose a novel approach to UGC image super-resolution by integrating semantic guidance into a diffusion framework. Our method addresses the inconsistency between degradations in wild and synthetic datasets by separately simulating the degradation processes on the LSDIR dataset and combining them with the official paired training set. Furthermore, we enhance degradation removal and detail generation by incorporating a pretrained semantic extraction model (SAM2) and fine-tuning key hyperparameters for improved perceptual fidelity. Extensive experiments demonstrate the superiority of our approach against state-of-the-art methods. Additionally, the proposed model won second place in the CVPR NTIRE 2025 Short-form UGC Image Super-Resolution Challenge, further validating its effectiveness. The code is available at https://github.c10pom/Moonsofang/NTIRE-2025-SRlab.
Abstract:This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the $\operatorname{DIV2K\_LSDIR\_valid}$ dataset and 26.99 dB on the $\operatorname{DIV2K\_LSDIR\_test}$ dataset. A robust participation saw \textbf{244} registered entrants, with \textbf{43} teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.
Abstract:Recent advancements in deep learning have driven significant progress in lossless image compression. With the emergence of Large Language Models (LLMs), preliminary attempts have been made to leverage the extensive prior knowledge embedded in these pretrained models to enhance lossless image compression, particularly by improving the entropy model. However, a significant challenge remains in bridging the gap between the textual prior knowledge within LLMs and lossless image compression. To tackle this challenge and unlock the potential of LLMs, this paper introduces a novel paradigm for lossless image compression that incorporates LLMs with visual prompts. Specifically, we first generate a lossy reconstruction of the input image as visual prompts, from which we extract features to serve as visual embeddings for the LLM. The residual between the original image and the lossy reconstruction is then fed into the LLM along with these visual embeddings, enabling the LLM to function as an entropy model to predict the probability distribution of the residual. Extensive experiments on multiple benchmark datasets demonstrate our method achieves state-of-the-art compression performance, surpassing both traditional and learning-based lossless image codecs. Furthermore, our approach can be easily extended to images from other domains, such as medical and screen content images, achieving impressive performance. These results highlight the potential of LLMs for lossless image compression and may inspire further research in related directions.
Abstract:Recent years, learned image compression has made tremendous progress to achieve impressive coding efficiency. Its coding gain mainly comes from non-linear neural network-based transform and learnable entropy modeling. However, most of recent focuses have been solely on a strong backbone, and few studies consider the low-complexity design. In this paper, we propose LALIC, a linear attention modeling for learned image compression. Specially, we propose to use Bi-RWKV blocks, by utilizing the Spatial Mix and Channel Mix modules to achieve more compact features extraction, and apply the Conv based Omni-Shift module to adapt to two-dimensional latent representation. Furthermore, we propose a RWKV-based Spatial-Channel ConTeXt model (RWKV-SCCTX), that leverages the Bi-RWKV to modeling the correlation between neighboring features effectively, to further improve the RD performance. To our knowledge, our work is the first work to utilize efficient Bi-RWKV models with linear attention for learned image compression. Experimental results demonstrate that our method achieves competitive RD performances by outperforming VTM-9.1 by -14.84%, -15.20%, -17.32% in BD-rate on Kodak, Tecnick and CLIC Professional validation datasets.
Abstract:The rapid rise of real-time communication and large language models has significantly increased the importance of speech compression. Deep learning-based neural speech codecs have outperformed traditional signal-level speech codecs in terms of rate-distortion (RD) performance. Typically, these neural codecs employ an encoder-quantizer-decoder architecture, where audio is first converted into latent code feature representations and then into discrete tokens. However, this architecture exhibits insufficient RD performance due to two main drawbacks: (1) the inadequate performance of the quantizer, challenging training processes, and issues such as codebook collapse; (2) the limited representational capacity of the encoder and decoder, making it difficult to meet feature representation requirements across various bitrates. In this paper, we propose a rate-aware learned speech compression scheme that replaces the quantizer with an advanced channel-wise entropy model to improve RD performance, simplify training, and avoid codebook collapse. We employ multi-scale convolution and linear attention mixture blocks to enhance the representational capacity and flexibility of the encoder and decoder. Experimental results demonstrate that the proposed method achieves state-of-the-art RD performance, obtaining 53.51% BD-Rate bitrate saving in average, and achieves 0.26 BD-VisQol and 0.44 BD-PESQ gains.
Abstract:Learning-based probabilistic models can be combined with an entropy coder for data compression. However, due to the high complexity of learning-based models, their practical application as text compressors has been largely overlooked. To address this issue, our work focuses on a low-complexity design while maintaining compression performance. We introduce a novel Learned Lossless Low-complexity Text Compression method (L3TC). Specifically, we conduct extensive experiments demonstrating that RWKV models achieve the fastest decoding speed with a moderate compression ratio, making it the most suitable backbone for our method. Second, we propose an outlier-aware tokenizer that uses a limited vocabulary to cover frequent tokens while allowing outliers to bypass the prediction and encoding. Third, we propose a novel high-rank reparameterization strategy that enhances the learning capability during training without increasing complexity during inference. Experimental results validate that our method achieves 48% bit saving compared to gzip compressor. Besides, L3TC offers compression performance comparable to other learned compressors, with a 50x reduction in model parameters. More importantly, L3TC is the fastest among all learned compressors, providing real-time decoding speeds up to megabytes per second. Our code is available at https://github.com/alipay/L3TC-leveraging-rwkv-for-learned-lossless-low-complexity-text-compression.git.
Abstract:Learned image compression (LIC) methods often employ symmetrical encoder and decoder architectures, evitably increasing decoding time. However, practical scenarios demand an asymmetric design, where the decoder requires low complexity to cater to diverse low-end devices, while the encoder can accommodate higher complexity to improve coding performance. In this paper, we propose an asymmetric lightweight learned image compression (AsymLLIC) architecture with a novel training scheme, enabling the gradual substitution of complex decoding modules with simpler ones. Building upon this approach, we conduct a comprehensive comparison of different decoder network structures to strike a better trade-off between complexity and compression performance. Experiment results validate the efficiency of our proposed method, which not only achieves comparable performance to VVC but also offers a lightweight decoder with only 51.47 GMACs computation and 19.65M parameters. Furthermore, this design methodology can be easily applied to any LIC models, enabling the practical deployment of LIC techniques.
Abstract:Recent advances in Artificial Intelligence Generated Content (AIGC) have garnered significant interest, accompanied by an increasing need to transmit and compress the vast number of AI-generated images (AIGIs). However, there is a noticeable deficiency in research focused on compression methods for AIGIs. To address this critical gap, we introduce a scalable cross-modal compression framework that incorporates multiple human-comprehensible modalities, designed to efficiently capture and relay essential visual information for AIGIs. In particular, our framework encodes images into a layered bitstream consisting of a semantic layer that delivers high-level semantic information through text prompts; a structural layer that captures spatial details using edge or skeleton maps; and a texture layer that preserves local textures via a colormap. Utilizing Stable Diffusion as the backend, the framework effectively leverages these multimodal priors for image generation, effectively functioning as a decoder when these priors are encoded. Qualitative and quantitative results show that our method proficiently restores both semantic and visual details, competing against baseline approaches at extremely low bitrates ( <0.02 bpp). Additionally, our framework facilitates downstream editing applications without requiring full decoding, thereby paving a new direction for future research in AIGI compression.
Abstract:Neural image compression often faces a challenging trade-off among rate, distortion and perception. While most existing methods typically focus on either achieving high pixel-level fidelity or optimizing for perceptual metrics, we propose a novel approach that simultaneously addresses both aspects for a fixed neural image codec. Specifically, we introduce a plug-and-play module at the decoder side that leverages a latent diffusion process to transform the decoded features, enhancing either low distortion or high perceptual quality without altering the original image compression codec. Our approach facilitates fusion of original and transformed features without additional training, enabling users to flexibly adjust the balance between distortion and perception during inference. Extensive experimental results demonstrate that our method significantly enhances the pretrained codecs with a wide, adjustable distortion-perception range while maintaining their original compression capabilities. For instance, we can achieve more than 150% improvement in LPIPS-BDRate without sacrificing more than 1 dB in PSNR.