School of Computer Science & Technology, Beijing Institute of Technology, China
Abstract:The neural radiance fields (NeRF) have advanced the development of 3D volumetric video technology, but the large data volumes they involve pose significant challenges for storage and transmission. To address these problems, the existing solutions typically compress these NeRF representations after the training stage, leading to a separation between representation training and compression. In this paper, we try to directly learn a compact NeRF representation for volumetric video in the training stage based on the proposed rate-aware compression framework. Specifically, for volumetric video, we use a simple yet effective modeling strategy to reduce temporal redundancy for the NeRF representation. Then, during the training phase, an implicit entropy model is utilized to estimate the bitrate of the NeRF representation. This entropy model is then encoded into the bitstream to assist in the decoding of the NeRF representation. This approach enables precise bitrate estimation, thereby leading to a compact NeRF representation. Furthermore, we propose an adaptive quantization strategy and learn the optimal quantization step for the NeRF representations. Finally, the NeRF representation can be optimized by using the rate-distortion trade-off. Our proposed compression framework can be used for different representations and experimental results demonstrate that our approach significantly reduces the storage size with marginal distortion and achieves state-of-the-art rate-distortion performance for volumetric video on the HumanRF and ReRF datasets. Compared to the previous state-of-the-art method TeTriRF, we achieved an approximately -80% BD-rate on the HumanRF dataset and -60% BD-rate on the ReRF dataset.
Abstract:The outstanding performance of Large Multimodal Models (LMMs) has made them widely applied in vision-related tasks. However, various corruptions in the real world mean that images will not be as ideal as in simulations, presenting significant challenges for the practical application of LMMs. To address this issue, we introduce R-Bench, a benchmark focused on the **Real-world Robustness of LMMs**. Specifically, we: (a) model the complete link from user capture to LMMs reception, comprising 33 corruption dimensions, including 7 steps according to the corruption sequence, and 7 groups based on low-level attributes; (b) collect reference/distorted image dataset before/after corruption, including 2,970 question-answer pairs with human labeling; (c) propose comprehensive evaluation for absolute/relative robustness and benchmark 20 mainstream LMMs. Results show that while LMMs can correctly handle the original reference images, their performance is not stable when faced with distorted images, and there is a significant gap in robustness compared to the human visual system. We hope that R-Bench will inspire improving the robustness of LMMs, **extending them from experimental simulations to the real-world application**. Check https://q-future.github.io/R-Bench for details.
Abstract:Unsupervised video semantic compression (UVSC), i.e., compressing videos to better support various analysis tasks, has recently garnered attention. However, the semantic richness of previous methods remains limited, due to the single semantic learning objective, limited training data, etc. To address this, we propose to boost the UVSC task by absorbing the off-the-shelf rich semantics from VFMs. Specifically, we introduce a VFMs-shared semantic alignment layer, complemented by VFM-specific prompts, to flexibly align semantics between the compressed video and various VFMs. This allows different VFMs to collaboratively build a mutually-enhanced semantic space, guiding the learning of the compression model. Moreover, we introduce a dynamic trajectory-based inter-frame compression scheme, which first estimates the semantic trajectory based on the historical content, and then traverses along the trajectory to predict the future semantics as the coding context. This reduces the overall bitcost of the system, further improving the compression efficiency. Our approach outperforms previous coding methods on three mainstream tasks and six datasets.
Abstract:Recently, the dynamic scene reconstruction using Gaussians has garnered increased interest. Mainstream approaches typically employ a global deformation field to warp a 3D scene in the canonical space. However, the inherently low-frequency nature of implicit neural fields often leads to ineffective representations of complex motions. Moreover, their structural rigidity can hinder adaptation to scenes with varying resolutions and durations. To overcome these challenges, we introduce a novel approach utilizing discrete 3D control points. This method models local rays physically and establishes a motion-decoupling coordinate system, which effectively merges traditional graphics with learnable pipelines for a robust and efficient local 6-degrees-of-freedom (6-DoF) motion representation. Additionally, we have developed a generalized framework that incorporates our control points with Gaussians. Starting from an initial 3D reconstruction, our workflow decomposes the streaming 4D real-world reconstruction into four independent submodules: 3D segmentation, 3D control points generation, object-wise motion manipulation, and residual compensation. Our experiments demonstrate that this method outperforms existing state-of-the-art 4D Gaussian Splatting techniques on both the Neu3DV and CMU-Panoptic datasets. Our approach also significantly accelerates training, with the optimization of our 3D control points achievable within just 2 seconds per frame on a single NVIDIA 4070 GPU.
Abstract:The facial sketch synthesis (FSS) model, capable of generating sketch portraits from given facial photographs, holds profound implications across multiple domains, encompassing cross-modal face recognition, entertainment, art, media, among others. However, the production of high-quality sketches remains a formidable task, primarily due to the challenges and flaws associated with three key factors: (1) the scarcity of artist-drawn data, (2) the constraints imposed by limited style types, and (3) the deficiencies of processing input information in existing models. To address these difficulties, we propose a lightweight end-to-end synthesis model that efficiently converts images to corresponding multi-stylized sketches, obviating the necessity for any supplementary inputs (\eg, 3D geometry). In this study, we overcome the issue of data insufficiency by incorporating semi-supervised learning into the training process. Additionally, we employ a feature extraction module and style embeddings to proficiently steer the generative transformer during the iterative prediction of masked image tokens, thus achieving a continuous stylized output that retains facial features accurately in sketches. The extensive experiments demonstrate that our method consistently outperforms previous algorithms across multiple benchmarks, exhibiting a discernible disparity.
Abstract:Ultra-low bitrate image compression is a challenging and demanding topic. With the development of Large Multimodal Models (LMMs), a Cross Modality Compression (CMC) paradigm of Image-Text-Image has emerged. Compared with traditional codecs, this semantic-level compression can reduce image data size to 0.1\% or even lower, which has strong potential applications. However, CMC has certain defects in consistency with the original image and perceptual quality. To address this problem, we introduce CMC-Bench, a benchmark of the cooperative performance of Image-to-Text (I2T) and Text-to-Image (T2I) models for image compression. This benchmark covers 18,000 and 40,000 images respectively to verify 6 mainstream I2T and 12 T2I models, including 160,000 subjective preference scores annotated by human experts. At ultra-low bitrates, this paper proves that the combination of some I2T and T2I models has surpassed the most advanced visual signal codecs; meanwhile, it highlights where LMMs can be further optimized toward the compression task. We encourage LMM developers to participate in this test to promote the evolution of visual signal codec protocols.
Abstract:Most video compression methods focus on human visual perception, neglecting semantic preservation. This leads to severe semantic loss during the compression, hampering downstream video analysis tasks. In this paper, we propose a Masked Video Modeling (MVM)-powered compression framework that particularly preserves video semantics, by jointly mining and compressing the semantics in a self-supervised manner. While MVM is proficient at learning generalizable semantics through the masked patch prediction task, it may also encode non-semantic information like trivial textural details, wasting bitcost and bringing semantic noises. To suppress this, we explicitly regularize the non-semantic entropy of the compressed video in the MVM token space. The proposed framework is instantiated as a simple Semantic-Mining-then-Compression (SMC) model. Furthermore, we extend SMC as an advanced SMC++ model from several aspects. First, we equip it with a masked motion prediction objective, leading to better temporal semantic learning ability. Second, we introduce a Transformer-based compression module, to improve the semantic compression efficacy. Considering that directly mining the complex redundancy among heterogeneous features in different coding stages is non-trivial, we introduce a compact blueprint semantic representation to align these features into a similar form, fully unleashing the power of the Transformer-based compression module. Extensive results demonstrate the proposed SMC and SMC++ models show remarkable superiority over previous traditional, learnable, and perceptual quality-oriented video codecs, on three video analysis tasks and seven datasets. \textit{Codes and model are available at: \url{https://github.com/tianyuan168326/VideoSemanticCompression-Pytorch}.
Abstract:Prior research on deep video compression (DVC) for machine tasks typically necessitates training a unique codec for each specific task, mandating a dedicated decoder per task. In contrast, traditional video codecs employ a flexible encoder controller, enabling the adaptation of a single codec to different tasks through mechanisms like mode prediction. Drawing inspiration from this, we introduce an innovative encoder controller for deep video compression for machines. This controller features a mode prediction and a Group of Pictures (GoP) selection module. Our approach centralizes control at the encoding stage, allowing for adaptable encoder adjustments across different tasks, such as detection and tracking, while maintaining compatibility with a standard pre-trained DVC decoder. Empirical evidence demonstrates that our method is applicable across multiple tasks with various existing pre-trained DVCs. Moreover, extensive experiments demonstrate that our method outperforms previous DVC by about 25% bitrate for different tasks, with only one pre-trained decoder.
Abstract:Implicit neural representations (INRs) recently achieved great success in image representation and compression, offering high visual quality and fast rendering speeds with 10-1000 FPS, assuming sufficient GPU resources are available. However, this requirement often hinders their use on low-end devices with limited memory. In response, we propose a groundbreaking paradigm of image representation and compression by 2D Gaussian Splatting, named GaussianImage. We first introduce 2D Gaussian to represent the image, where each Gaussian has 8 parameters including position, covariance and color. Subsequently, we unveil a novel rendering algorithm based on accumulated summation. Remarkably, our method with a minimum of 3$\times$ lower GPU memory usage and 5$\times$ faster fitting time not only rivals INRs (e.g., WIRE, I-NGP) in representation performance, but also delivers a faster rendering speed of 1500-2000 FPS regardless of parameter size. Furthermore, we integrate existing vector quantization technique to build an image codec. Experimental results demonstrate that our codec attains rate-distortion performance comparable to compression-based INRs such as COIN and COIN++, while facilitating decoding speeds of approximately 1000 FPS. Additionally, preliminary proof of concept shows that our codec surpasses COIN and COIN++ in performance when using partial bits-back coding.
Abstract:With the evolution of storage and communication protocols, ultra-low bitrate image compression has become a highly demanding topic. However, existing compression algorithms must sacrifice either consistency with the ground truth or perceptual quality at ultra-low bitrate. In recent years, the rapid development of the Large Multimodal Model (LMM) has made it possible to balance these two goals. To solve this problem, this paper proposes a method called Multimodal Image Semantic Compression (MISC), which consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information. Experimental results show that our proposed MISC is suitable for compressing both traditional Natural Sense Images (NSIs) and emerging AI-Generated Images (AIGIs) content. It can achieve optimal consistency and perception results while saving 50% bitrate, which has strong potential applications in the next generation of storage and communication. The code will be released on https://github.com/lcysyzxdxc/MISC.