Abstract:With the dramatic upsurge in the volume of ultrasound examinations, low-quality ultrasound imaging has gradually increased due to variations in operator proficiency and imaging circumstances, imposing a severe burden on diagnosis accuracy and even entailing the risk of restarting the diagnosis in critical cases. To assist clinicians in selecting high-quality ultrasound images and ensuring accurate diagnoses, we introduce Ultrasound-QBench, a comprehensive benchmark that systematically evaluates multimodal large language models (MLLMs) on quality assessment tasks of ultrasound images. Ultrasound-QBench establishes two datasets collected from diverse sources: IVUSQA, consisting of 7,709 images, and CardiacUltraQA, containing 3,863 images. These images encompassing common ultrasound imaging artifacts are annotated by professional ultrasound experts and classified into three quality levels: high, medium, and low. To better evaluate MLLMs, we decompose the quality assessment task into three dimensionalities: qualitative classification, quantitative scoring, and comparative assessment. The evaluation of 7 open-source MLLMs as well as 1 proprietary MLLMs demonstrates that MLLMs possess preliminary capabilities for low-level visual tasks in ultrasound image quality classification. We hope this benchmark will inspire the research community to delve deeper into uncovering and enhancing the untapped potential of MLLMs for medical imaging tasks.
Abstract:Facial attractiveness prediction (FAP) has long been an important computer vision task, which could be widely applied in live streaming for facial retouching, content recommendation, etc. However, previous FAP datasets are either small, closed-source, or lack diversity. Moreover, the corresponding FAP models exhibit limited generalization and adaptation ability. To overcome these limitations, in this paper we present LiveBeauty, the first large-scale live-specific FAP dataset, in a more challenging application scenario, i.e., live streaming. 10,000 face images are collected from a live streaming platform directly, with 200,000 corresponding attractiveness annotations obtained from a well-devised subjective experiment, making LiveBeauty the largest open-access FAP dataset in the challenging live scenario. Furthermore, a multi-modal FAP method is proposed to measure the facial attractiveness in live streaming. Specifically, we first extract holistic facial prior knowledge and multi-modal aesthetic semantic features via a Personalized Attractiveness Prior Module (PAPM) and a Multi-modal Attractiveness Encoder Module (MAEM), respectively, then integrate the extracted features through a Cross-Modal Fusion Module (CMFM). Extensive experiments conducted on both LiveBeauty and other open-source FAP datasets demonstrate that our proposed method achieves state-of-the-art performance. Dataset will be available soon.
Abstract:Image composition involves extracting a foreground object from one image and pasting it into another image through Image harmonization algorithms (IHAs), which aim to adjust the appearance of the foreground object to better match the background. Existing image quality assessment (IQA) methods may fail to align with human visual preference on image harmonization due to the insensitivity to minor color or light inconsistency. To address the issue and facilitate the advancement of IHAs, we introduce the first Image Quality Assessment Database for image Harmony evaluation (HarmonyIQAD), which consists of 1,350 harmonized images generated by 9 different IHAs, and the corresponding human visual preference scores. Based on this database, we propose a Harmony Image Quality Assessment (HarmonyIQA), to predict human visual preference for harmonized images. Extensive experiments show that HarmonyIQA achieves state-of-the-art performance on human visual preference evaluation for harmonized images, and also achieves competing results on traditional IQA tasks. Furthermore, cross-dataset evaluation also shows that HarmonyIQA exhibits better generalization ability than self-supervised learning-based IQA methods. Both HarmonyIQAD and HarmonyIQA will be made publicly available upon paper publication.
Abstract:Current Visual Language Models (VLMs) show impressive image understanding but struggle with visual illusions, especially in real-world scenarios. Existing benchmarks focus on classical cognitive illusions, which have been learned by state-of-the-art (SOTA) VLMs, revealing issues such as hallucinations and limited perceptual abilities. To address this gap, we introduce IllusionBench, a comprehensive visual illusion dataset that encompasses not only classic cognitive illusions but also real-world scene illusions. This dataset features 1,051 images, 5,548 question-answer pairs, and 1,051 golden text descriptions that address the presence, causes, and content of the illusions. We evaluate ten SOTA VLMs on this dataset using true-or-false, multiple-choice, and open-ended tasks. In addition to real-world illusions, we design trap illusions that resemble classical patterns but differ in reality, highlighting hallucination issues in SOTA models. The top-performing model, GPT-4o, achieves 80.59% accuracy on true-or-false tasks and 76.75% on multiple-choice questions, but still lags behind human performance. In the semantic description task, GPT-4o's hallucinations on classical illusions result in low scores for trap illusions, even falling behind some open-source models. IllusionBench is, to the best of our knowledge, the largest and most comprehensive benchmark for visual illusions in VLMs to date.
Abstract:Although significant progress has been made in enhancing visibility, retrieving texture details, and mitigating noise in Low-Light (LL) images, the challenge persists in applying current Low-Light Image Enhancement (LLIE) methods to real-world scenarios, primarily due to the diverse illumination conditions encountered. Furthermore, the quest for generating enhancements that are visually realistic and attractive remains an underexplored realm. In response to these challenges, we introduce a novel \textbf{LLIE} framework with the guidance of \textbf{G}enerative \textbf{P}erceptual \textbf{P}riors (\textbf{GPP-LLIE}) derived from vision-language models (VLMs). Specifically, we first propose a pipeline that guides VLMs to assess multiple visual attributes of the LL image and quantify the assessment to output the global and local perceptual priors. Subsequently, to incorporate these generative perceptual priors to benefit LLIE, we introduce a transformer-based backbone in the diffusion process, and develop a new layer normalization (\textit{\textbf{GPP-LN}}) and an attention mechanism (\textit{\textbf{LPP-Attn}}) guided by global and local perceptual priors. Extensive experiments demonstrate that our model outperforms current SOTA methods on paired LL datasets and exhibits superior generalization on real-world data. The code is released at \url{https://github.com/LowLevelAI/GPP-LLIE}.
Abstract:With the rapid development of eXtended Reality (XR), egocentric spatial shooting and display technologies have further enhanced immersion and engagement for users. Assessing the quality of experience (QoE) of egocentric spatial videos is crucial to ensure a high-quality viewing experience. However, the corresponding research is still lacking. In this paper, we use the embodied experience to highlight this more immersive experience and study the new problem, i.e., embodied perceptual quality assessment for egocentric spatial videos. Specifically, we introduce the first Egocentric Spatial Video Quality Assessment Database (ESVQAD), which comprises 600 egocentric spatial videos and their mean opinion scores (MOSs). Furthermore, we propose a novel multi-dimensional binocular feature fusion model, termed ESVQAnet, which integrates binocular spatial, motion, and semantic features to predict the perceptual quality. Experimental results demonstrate the ESVQAnet outperforms 16 state-of-the-art VQA models on the embodied perceptual quality assessment task, and exhibits strong generalization capability on traditional VQA tasks. The database and codes will be released upon the publication.
Abstract:The rapid growth of user-generated content (UGC) videos has produced an urgent need for effective video quality assessment (VQA) algorithms to monitor video quality and guide optimization and recommendation procedures. However, current VQA models generally only give an overall rating for a UGC video, which lacks fine-grained labels for serving video processing and recommendation applications. To address the challenges and promote the development of UGC videos, we establish the first large-scale Fine-grained Video quality assessment Database, termed FineVD, which comprises 6104 UGC videos with fine-grained quality scores and descriptions across multiple dimensions. Based on this database, we propose a Fine-grained Video Quality assessment (FineVQ) model to learn the fine-grained quality of UGC videos, with the capabilities of quality rating, quality scoring, and quality attribution. Extensive experimental results demonstrate that our proposed FineVQ can produce fine-grained video-quality results and achieve state-of-the-art performance on FineVD and other commonly used UGC-VQA datasets. Both Both FineVD and FineVQ will be made publicly available.
Abstract:Image quality assessment (IQA) of user-generated content (UGC) is a critical technique for human quality of experience (QoE). However, for robot-generated content (RGC), will its image quality be consistent with the Moravec paradox and counter to human common sense? Human subjective scoring is more based on the attractiveness of the image. Embodied agent are required to interact and perceive in the environment, and finally perform specific tasks. Visual images as inputs directly influence downstream tasks. In this paper, we first propose an embodied image quality assessment (EIQA) frameworks. We establish assessment metrics for input images based on the downstream tasks of robot. In addition, we construct an Embodied Preference Database (EPD) containing 5,000 reference and distorted image annotations. The performance of mainstream IQA algorithms on EPD dataset is finally verified. The experiments demonstrate that quality assessment of embodied images is different from that of humans. We sincerely hope that the EPD can contribute to the development of embodied AI by focusing on image quality assessment. The benchmark is available at https://github.com/Jianbo-maker/EPD_benchmark.
Abstract:Artificial intelligence generative models exhibit remarkable capabilities in content creation, particularly in face image generation, customization, and restoration. However, current AI-generated faces (AIGFs) often fall short of human preferences due to unique distortions, unrealistic details, and unexpected identity shifts, underscoring the need for a comprehensive quality evaluation framework for AIGFs. To address this need, we introduce FaceQ, a large-scale, comprehensive database of AI-generated Face images with fine-grained Quality annotations reflecting human preferences. The FaceQ database comprises 12,255 images generated by 29 models across three tasks: (1) face generation, (2) face customization, and (3) face restoration. It includes 32,742 mean opinion scores (MOSs) from 180 annotators, assessed across multiple dimensions: quality, authenticity, identity (ID) fidelity, and text-image correspondence. Using the FaceQ database, we establish F-Bench, a benchmark for comparing and evaluating face generation, customization, and restoration models, highlighting strengths and weaknesses across various prompts and evaluation dimensions. Additionally, we assess the performance of existing image quality assessment (IQA), face quality assessment (FQA), AI-generated content image quality assessment (AIGCIQA), and preference evaluation metrics, manifesting that these standard metrics are relatively ineffective in evaluating authenticity, ID fidelity, and text-image correspondence. The FaceQ database will be publicly available upon publication.
Abstract:Neural Radiance Field (NeRF)-based volumetric video has revolutionized visual media by delivering photorealistic Free-Viewpoint Video (FVV) experiences that provide audiences with unprecedented immersion and interactivity. However, the substantial data volumes pose significant challenges for storage and transmission. Existing solutions typically optimize NeRF representation and compression independently or focus on a single fixed rate-distortion (RD) tradeoff. In this paper, we propose VRVVC, a novel end-to-end joint optimization variable-rate framework for volumetric video compression that achieves variable bitrates using a single model while maintaining superior RD performance. Specifically, VRVVC introduces a compact tri-plane implicit residual representation for inter-frame modeling of long-duration dynamic scenes, effectively reducing temporal redundancy. We further propose a variable-rate residual representation compression scheme that leverages a learnable quantization and a tiny MLP-based entropy model. This approach enables variable bitrates through the utilization of predefined Lagrange multipliers to manage the quantization error of all latent representations. Finally, we present an end-to-end progressive training strategy combined with a multi-rate-distortion loss function to optimize the entire framework. Extensive experiments demonstrate that VRVVC achieves a wide range of variable bitrates within a single model and surpasses the RD performance of existing methods across various datasets.