Abstract:Recommendation systems have found extensive applications across diverse domains. However, the training data available typically comprises implicit feedback, manifested as user clicks and purchase behaviors, rather than explicit declarations of user preferences. This type of training data presents three main challenges for accurate ranking prediction: First, the unobservable nature of user preferences makes likelihood function modeling inherently difficult. Second, the resulting false positives (FP) and false negatives (FN) introduce noise into the learning process, disrupting parameter learning. Third, data bias arises as observed interactions tend to concentrate on a few popular items, exacerbating the feedback loop of popularity bias. To address these issues, we propose Variational BPR, a novel and easily implementable learning objective that integrates key components for enhancing collaborative filtering: likelihood optimization, noise reduction, and popularity debiasing. Our approach involves decomposing the pairwise loss under the ELBO-KL framework and deriving its variational lower bound to establish a manageable learning objective for approximate inference. Within this bound, we introduce an attention-based latent interest prototype contrastive mechanism, replacing instance-level contrastive learning, to effectively reduce noise from problematic samples. The process of deriving interest prototypes implicitly incorporates a flexible hard sample mining strategy, capable of simultaneously identifying hard positive and hard negative samples. Furthermore, we demonstrate that this hard sample mining strategy promotes feature distribution uniformity, thereby alleviating popularity bias. Empirically, we demonstrate the effectiveness of Variational BPR on popular backbone recommendation models. The code and data are available at: https://github.com/liubin06/VariationalBPR
Abstract:Image Quality Assessment (IQA) based on human subjective preferences has undergone extensive research in the past decades. However, with the development of communication protocols, the visual data consumption volume of machines has gradually surpassed that of humans. For machines, the preference depends on downstream tasks such as segmentation and detection, rather than visual appeal. Considering the huge gap between human and machine visual systems, this paper proposes the topic: Image Quality Assessment for Machine Vision for the first time. Specifically, we (1) defined the subjective preferences of machines, including downstream tasks, test models, and evaluation metrics; (2) established the Machine Preference Database (MPD), which contains 2.25M fine-grained annotations and 30k reference/distorted image pair instances; (3) verified the performance of mainstream IQA algorithms on MPD. Experiments show that current IQA metrics are human-centric and cannot accurately characterize machine preferences. We sincerely hope that MPD can promote the evolution of IQA from human to machine preferences. Project page is on: https://github.com/lcysyzxdxc/MPD.
Abstract:With the emergence of Multimodal Large Language Models (MLLMs), hundreds of benchmarks have been developed to ensure the reliability of MLLMs in downstream tasks. However, the evaluation mechanism itself may not be reliable. For developers of MLLMs, questions remain about which benchmark to use and whether the test results meet their requirements. Therefore, we propose a critical principle of Information Density, which examines how much insight a benchmark can provide for the development of MLLMs. We characterize it from four key dimensions: (1) Fallacy, (2) Difficulty, (3) Redundancy, (4) Diversity. Through a comprehensive analysis of more than 10,000 samples, we measured the information density of 19 MLLM benchmarks. Experiments show that using the latest benchmarks in testing can provide more insight compared to previous ones, but there is still room for improvement in their information density. We hope this principle can promote the development and application of future MLLM benchmarks. Project page: https://github.com/lcysyzxdxc/bench4bench
Abstract:Image quality scoring and interpreting are two fundamental components of Image Quality Assessment (IQA). The former quantifies image quality, while the latter enables descriptive question answering about image quality. Traditionally, these two tasks have been addressed independently. However, from the perspective of the Human Visual System (HVS) and the Perception-Decision Integration Model, they are inherently interconnected: interpreting serves as the foundation for scoring, while scoring provides an abstract summary of interpreting. Thus, unifying these capabilities within a single model is both intuitive and logically coherent. In this paper, we propose Q-SiT (Quality Scoring and Interpreting joint Teaching), a unified framework that enables large multimodal models (LMMs) to learn both image quality scoring and interpreting simultaneously. We achieve this by transforming conventional IQA datasets into learnable question-answering datasets and incorporating human-annotated quality interpreting data for training. Furthermore, we introduce an efficient scoring & interpreting balance strategy, which first determines the optimal data mix ratio on lightweight LMMs and then maps this ratio to primary LMMs for fine-tuning adjustment. This strategy not only mitigates task interference and enhances cross-task knowledge transfer but also significantly reduces computational costs compared to direct optimization on full-scale LMMs. With this joint learning framework and corresponding training strategy, we develop Q-SiT, the first model capable of simultaneously performing image quality scoring and interpreting tasks, along with its lightweight variant, Q-SiT-mini. Experimental results demonstrate that Q-SiT achieves strong performance in both tasks with superior generalization IQA abilities.Project page at https://github.com/Q-Future/Q-SiT.
Abstract:Medical image re-identification (MedReID) is under-explored so far, despite its critical applications in personalized healthcare and privacy protection. In this paper, we introduce a thorough benchmark and a unified model for this problem. First, to handle various medical modalities, we propose a novel Continuous Modality-based Parameter Adapter (ComPA). ComPA condenses medical content into a continuous modality representation and dynamically adjusts the modality-agnostic model with modality-specific parameters at runtime. This allows a single model to adaptively learn and process diverse modality data. Furthermore, we integrate medical priors into our model by aligning it with a bag of pre-trained medical foundation models, in terms of the differential features. Compared to single-image feature, modeling the inter-image difference better fits the re-identification problem, which involves discriminating multiple images. We evaluate the proposed model against 25 foundation models and 8 large multi-modal language models across 11 image datasets, demonstrating consistently superior performance. Additionally, we deploy the proposed MedReID technique to two real-world applications, i.e., history-augmented personalized diagnosis and medical privacy protection. Codes and model is available at \href{https://github.com/tianyuan168326/All-in-One-MedReID-Pytorch}{https://github.com/tianyuan168326/All-in-One-MedReID-Pytorch}.
Abstract:Evaluating text-to-vision content hinges on two crucial aspects: visual quality and alignment. While significant progress has been made in developing objective models to assess these dimensions, the performance of such models heavily relies on the scale and quality of human annotations. According to Scaling Law, increasing the number of human-labeled instances follows a predictable pattern that enhances the performance of evaluation models. Therefore, we introduce a comprehensive dataset designed to Evaluate Visual quality and Alignment Level for text-to-vision content (Q-EVAL-100K), featuring the largest collection of human-labeled Mean Opinion Scores (MOS) for the mentioned two aspects. The Q-EVAL-100K dataset encompasses both text-to-image and text-to-video models, with 960K human annotations specifically focused on visual quality and alignment for 100K instances (60K images and 40K videos). Leveraging this dataset with context prompt, we propose Q-Eval-Score, a unified model capable of evaluating both visual quality and alignment with special improvements for handling long-text prompt alignment. Experimental results indicate that the proposed Q-Eval-Score achieves superior performance on both visual quality and alignment, with strong generalization capabilities across other benchmarks. These findings highlight the significant value of the Q-EVAL-100K dataset. Data and codes will be available at https://github.com/zzc-1998/Q-Eval.
Abstract:Recent advancements in open-source multi-modal large language models (MLLMs) have primarily focused on enhancing foundational capabilities, leaving a significant gap in human preference alignment. This paper introduces OmniAlign-V, a comprehensive dataset of 200K high-quality training samples featuring diverse images, complex questions, and varied response formats to improve MLLMs' alignment with human preferences. We also present MM-AlignBench, a human-annotated benchmark specifically designed to evaluate MLLMs' alignment with human values. Experimental results show that finetuning MLLMs with OmniAlign-V, using Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO), significantly enhances human preference alignment while maintaining or enhancing performance on standard VQA benchmarks, preserving their fundamental capabilities. Our datasets, benchmark, code and checkpoints have been released at https://github.com/PhoenixZ810/OmniAlign-V.
Abstract:Recent advancements in text-to-image (T2I) generation have spurred the development of text-to-3D asset (T23DA) generation, leveraging pretrained 2D text-to-image diffusion models for text-to-3D asset synthesis. Despite the growing popularity of text-to-3D asset generation, its evaluation has not been well considered and studied. However, given the significant quality discrepancies among various text-to-3D assets, there is a pressing need for quality assessment models aligned with human subjective judgments. To tackle this challenge, we conduct a comprehensive study to explore the T23DA quality assessment (T23DAQA) problem in this work from both subjective and objective perspectives. Given the absence of corresponding databases, we first establish the largest text-to-3D asset quality assessment database to date, termed the AIGC-T23DAQA database. This database encompasses 969 validated 3D assets generated from 170 prompts via 6 popular text-to-3D asset generation models, and corresponding subjective quality ratings for these assets from the perspectives of quality, authenticity, and text-asset correspondence, respectively. Subsequently, we establish a comprehensive benchmark based on the AIGC-T23DAQA database, and devise an effective T23DAQA model to evaluate the generated 3D assets from the aforementioned three perspectives, respectively.
Abstract:Many video-to-audio (VTA) methods have been proposed for dubbing silent AI-generated videos. An efficient quality assessment method for AI-generated audio-visual content (AGAV) is crucial for ensuring audio-visual quality. Existing audio-visual quality assessment methods struggle with unique distortions in AGAVs, such as unrealistic and inconsistent elements. To address this, we introduce AGAVQA, the first large-scale AGAV quality assessment dataset, comprising 3,382 AGAVs from 16 VTA methods. AGAVQA includes two subsets: AGAVQA-MOS, which provides multi-dimensional scores for audio quality, content consistency, and overall quality, and AGAVQA-Pair, designed for optimal AGAV pair selection. We further propose AGAV-Rater, a LMM-based model that can score AGAVs, as well as audio and music generated from text, across multiple dimensions, and selects the best AGAV generated by VTA methods to present to the user. AGAV-Rater achieves state-of-the-art performance on AGAVQA, Text-to-Audio, and Text-to-Music datasets. Subjective tests also confirm that AGAV-Rater enhances VTA performance and user experience. The project page is available at https://agav-rater.github.io.
Abstract:With the dramatic upsurge in the volume of ultrasound examinations, low-quality ultrasound imaging has gradually increased due to variations in operator proficiency and imaging circumstances, imposing a severe burden on diagnosis accuracy and even entailing the risk of restarting the diagnosis in critical cases. To assist clinicians in selecting high-quality ultrasound images and ensuring accurate diagnoses, we introduce Ultrasound-QBench, a comprehensive benchmark that systematically evaluates multimodal large language models (MLLMs) on quality assessment tasks of ultrasound images. Ultrasound-QBench establishes two datasets collected from diverse sources: IVUSQA, consisting of 7,709 images, and CardiacUltraQA, containing 3,863 images. These images encompassing common ultrasound imaging artifacts are annotated by professional ultrasound experts and classified into three quality levels: high, medium, and low. To better evaluate MLLMs, we decompose the quality assessment task into three dimensionalities: qualitative classification, quantitative scoring, and comparative assessment. The evaluation of 7 open-source MLLMs as well as 1 proprietary MLLMs demonstrates that MLLMs possess preliminary capabilities for low-level visual tasks in ultrasound image quality classification. We hope this benchmark will inspire the research community to delve deeper into uncovering and enhancing the untapped potential of MLLMs for medical imaging tasks.