Abstract:Traditional fault diagnosis methods struggle to handle fault data, with complex data characteristics such as high dimensions and large noise. Deep learning is a promising solution, which typically works well only when labeled fault data are available. To address these problems, a robust unsupervised fault diagnosis using machine learning is proposed in this paper. First, a special dimension reduction method for the high-dimensional fault data is designed. Second, the extracted features are enhanced by incorporating nonlinear information through the learning of a graph structure. Third, to alleviate the problem of reduced fault-diagnosis accuracy attributed to noise and outliers, $l_{2,1}$-norm and typicality-aware constraints are introduced from the perspective of model optimization, respectively. Finally, this paper provides comprehensive theoretical and experimental evidence supporting the effectiveness and robustness of the proposed method. The experiments on both the benchmark Tennessee-Eastman process and a real hot-steel milling process show that the proposed method exhibits better robustness compared to other methods, maintaining high diagnostic accuracy even in the presence of outliers or noise.
Abstract:Optimal transport has found widespread applications in signal processing and machine learning. Among its many equivalent formulations, optimal transport seeks to reconstruct a random variable/vector with a prescribed distribution at the destination while minimizing the expected distortion relative to a given random variable/vector at the source. However, in practice, certain constraints may render the optimal transport plan infeasible. In this work, we consider three types of constraints: rate constraints, dimension constraints, and channel constraints, motivated by perception-aware lossy compression, generative principal component analysis, and deep joint source-channel coding, respectively. Special attenion is given to the setting termed Gaussian Wasserstein optimal transport, where both the source and reconstruction variables are multivariate Gaussian, and the end-to-end distortion is measured by the mean squared error. We derive explicit results for the minimum achievable mean squared error under the three aforementioned constraints when the covariance matrices of the source and reconstruction variables commute.
Abstract:Large language models, employed as multiple agents that interact and collaborate with each other, have excelled at solving complex tasks. The agents are programmed with prompts that declare their functionality, along with the topologies that orchestrate interactions across agents. Designing prompts and topologies for multi-agent systems (MAS) is inherently complex. To automate the entire design process, we first conduct an in-depth analysis of the design space aiming to understand the factors behind building effective MAS. We reveal that prompts together with topologies play critical roles in enabling more effective MAS design. Based on the insights, we propose Multi-Agent System Search (MASS), a MAS optimization framework that efficiently exploits the complex MAS design space by interleaving its optimization stages, from local to global, from prompts to topologies, over three stages: 1) block-level (local) prompt optimization; 2) workflow topology optimization; 3) workflow-level (global) prompt optimization, where each stage is conditioned on the iteratively optimized prompts/topologies from former stages. We show that MASS-optimized multi-agent systems outperform a spectrum of existing alternatives by a substantial margin. Based on the MASS-found systems, we finally propose design principles behind building effective multi-agent systems.
Abstract:Although significant progress has been made in enhancing visibility, retrieving texture details, and mitigating noise in Low-Light (LL) images, the challenge persists in applying current Low-Light Image Enhancement (LLIE) methods to real-world scenarios, primarily due to the diverse illumination conditions encountered. Furthermore, the quest for generating enhancements that are visually realistic and attractive remains an underexplored realm. In response to these challenges, we introduce a novel \textbf{LLIE} framework with the guidance of \textbf{G}enerative \textbf{P}erceptual \textbf{P}riors (\textbf{GPP-LLIE}) derived from vision-language models (VLMs). Specifically, we first propose a pipeline that guides VLMs to assess multiple visual attributes of the LL image and quantify the assessment to output the global and local perceptual priors. Subsequently, to incorporate these generative perceptual priors to benefit LLIE, we introduce a transformer-based backbone in the diffusion process, and develop a new layer normalization (\textit{\textbf{GPP-LN}}) and an attention mechanism (\textit{\textbf{LPP-Attn}}) guided by global and local perceptual priors. Extensive experiments demonstrate that our model outperforms current SOTA methods on paired LL datasets and exhibits superior generalization on real-world data. The code is released at \url{https://github.com/LowLevelAI/GPP-LLIE}.
Abstract:Exposure Correction (EC) aims to recover proper exposure conditions for images captured under over-exposure or under-exposure scenarios. While existing deep learning models have shown promising results, few have fully embedded Retinex theory into their architecture, highlighting a gap in current methodologies. Additionally, the balance between high performance and efficiency remains an under-explored problem for exposure correction task. Inspired by Mamba which demonstrates powerful and highly efficient sequence modeling, we introduce a novel framework based on Mamba for Exposure Correction (ECMamba) with dual pathways, each dedicated to the restoration of reflectance and illumination map, respectively. Specifically, we firstly derive the Retinex theory and we train a Retinex estimator capable of mapping inputs into two intermediary spaces, each approximating the target reflectance and illumination map, respectively. This setup facilitates the refined restoration process of the subsequent Exposure Correction Mamba Module (ECMM). Moreover, we develop a novel 2D Selective State-space layer guided by Retinex information (Retinex-SS2D) as the core operator of ECMM. This architecture incorporates an innovative 2D scanning strategy based on deformable feature aggregation, thereby enhancing both efficiency and effectiveness. Extensive experiment results and comprehensive ablation studies demonstrate the outstanding performance and the importance of each component of our proposed ECMamba. Code is available at https://github.com/LowlevelAI/ECMamba.
Abstract:The selective classifier (SC) has garnered increasing interest in areas such as medical diagnostics, autonomous driving, and the justice system. The Area Under the Risk-Coverage Curve (AURC) has emerged as the foremost evaluation metric for assessing the performance of SC systems. In this work, we introduce a more straightforward representation of the population AURC, interpretable as a weighted risk function, and propose a Monte Carlo plug-in estimator applicable to finite sample scenarios. We demonstrate that our estimator is consistent and offers a low-bias estimation of the actual weights, with a tightly bounded mean squared error (MSE). We empirically show the effectiveness of this estimator on a comprehensive benchmark across multiple datasets, model architectures, and Confidence Score Functions (CSFs).
Abstract:Novel view synthesis of indoor scenes can be achieved by capturing a monocular video sequence of the environment. However, redundant information caused by artificial movements in the input video data reduces the efficiency of scene modeling. In this work, we tackle this challenge from the perspective of camera selection. We begin by constructing a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images. Based on this matrix, we use the Intra-List Diversity (ILD) metric to assess camera redundancy, formulating the camera selection task as an optimization problem. Then we apply a diversity-based sampling algorithm to optimize the camera selection. We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments, closely mimicking real-world scenarios. Experimental results demonstrate that our strategy outperforms other approaches under time and memory constraints. Remarkably, our method achieves performance comparable to models trained on the full dataset, while using only an average of 15% of the frames and 75% of the allotted time.
Abstract:Echocardiography video is a primary modality for diagnosing heart diseases, but the limited data poses challenges for both clinical teaching and machine learning training. Recently, video generative models have emerged as a promising strategy to alleviate this issue. However, previous methods often relied on holistic conditions during generation, hindering the flexible movement control over specific cardiac structures. In this context, we propose an explainable and controllable method for echocardiography video generation, taking an initial frame and a motion curve as guidance. Our contributions are three-fold. First, we extract motion information from each heart substructure to construct motion curves, enabling the diffusion model to synthesize customized echocardiography videos by modifying these curves. Second, we propose the structure-to-motion alignment module, which can map semantic features onto motion curves across cardiac structures. Third, The position-aware attention mechanism is designed to enhance video consistency utilizing Gaussian masks with structural position information. Extensive experiments on three echocardiography datasets show that our method outperforms others regarding fidelity and consistency. The full code will be released at https://github.com/mlmi-2024-72/ECM.
Abstract:The Segment Anything Model (SAM) can achieve satisfactory segmentation performance under high-quality box prompts. However, SAM's robustness is compromised by the decline in box quality, limiting its practicality in clinical reality. In this study, we propose a novel Robust Box prompt based SAM (\textbf{RoBox-SAM}) to ensure SAM's segmentation performance under prompts with different qualities. Our contribution is three-fold. First, we propose a prompt refinement module to implicitly perceive the potential targets, and output the offsets to directly transform the low-quality box prompt into a high-quality one. We then provide an online iterative strategy for further prompt refinement. Second, we introduce a prompt enhancement module to automatically generate point prompts to assist the box-promptable segmentation effectively. Last, we build a self-information extractor to encode the prior information from the input image. These features can optimize the image embeddings and attention calculation, thus, the robustness of SAM can be further enhanced. Extensive experiments on the large medical segmentation dataset including 99,299 images, 5 modalities, and 25 organs/targets validated the efficacy of our proposed RoBox-SAM.
Abstract:Most existing Low-light Image Enhancement (LLIE) methods either directly map Low-Light (LL) to Normal-Light (NL) images or use semantic or illumination maps as guides. However, the ill-posed nature of LLIE and the difficulty of semantic retrieval from impaired inputs limit these methods, especially in extremely low-light conditions. To address this issue, we present a new LLIE network via Generative LAtent feature based codebook REtrieval (GLARE), in which the codebook prior is derived from undegraded NL images using a Vector Quantization (VQ) strategy. More importantly, we develop a generative Invertible Latent Normalizing Flow (I-LNF) module to align the LL feature distribution to NL latent representations, guaranteeing the correct code retrieval in the codebook. In addition, a novel Adaptive Feature Transformation (AFT) module, featuring an adjustable function for users and comprising an Adaptive Mix-up Block (AMB) along with a dual-decoder architecture, is devised to further enhance fidelity while preserving the realistic details provided by codebook prior. Extensive experiments confirm the superior performance of GLARE on various benchmark datasets and real-world data. Its effectiveness as a preprocessing tool in low-light object detection tasks further validates GLARE for high-level vision applications. Code is released at https://github.com/LowLevelAI/GLARE.