Abstract:In this work, we propose a mean-squared error-based risk that enables the comparison and optimization of estimators of squared calibration errors in practical settings. Improving the calibration of classifiers is crucial for enhancing the trustworthiness and interpretability of machine learning models, especially in sensitive decision-making scenarios. Although various calibration (error) estimators exist in the current literature, there is a lack of guidance on selecting the appropriate estimator and tuning its hyperparameters. By leveraging the bilinear structure of squared calibration errors, we reformulate calibration estimation as a regression problem with independent and identically distributed (i.i.d.) input pairs. This reformulation allows us to quantify the performance of different estimators even for the most challenging calibration criterion, known as canonical calibration. Our approach advocates for a training-validation-testing pipeline when estimating a calibration error on an evaluation dataset. We demonstrate the effectiveness of our pipeline by optimizing existing calibration estimators and comparing them with novel kernel ridge regression-based estimators on standard image classification tasks.
Abstract:The evaluation of image generators remains a challenge due to the limitations of traditional metrics in providing nuanced insights into specific image regions. This is a critical problem as not all regions of an image may be learned with similar ease. In this work, we propose a novel approach to disentangle the cosine similarity of mean embeddings into the product of cosine similarities for individual pixel clusters via central kernel alignment. Consequently, we can quantify the contribution of the cluster-wise performance to the overall image generation performance. We demonstrate how this enhances the explainability and the likelihood of identifying pixel regions of model misbehavior across various real-world use cases.
Abstract:Proper scoring rules evaluate the quality of probabilistic predictions, playing an essential role in the pursuit of accurate and well-calibrated models. Every proper score decomposes into two fundamental components -- proper calibration error and refinement -- utilizing a Bregman divergence. While uncertainty calibration has gained significant attention, current literature lacks a general estimator for these quantities with known statistical properties. To address this gap, we propose a method that allows consistent, and asymptotically unbiased estimation of all proper calibration errors and refinement terms. In particular, we introduce Kullback--Leibler calibration error, induced by the commonly used cross-entropy loss. As part of our results, we prove the relation between refinement and f-divergences, which implies information monotonicity in neural networks, regardless of which proper scoring rule is optimized. Our experiments validate empirically the claimed properties of the proposed estimator and suggest that the selection of a post-hoc calibration method should be determined by the particular calibration error of interest.
Abstract:Generative models, like large language models, are becoming increasingly relevant in our daily lives, yet a theoretical framework to assess their generalization behavior and uncertainty does not exist. Particularly, the problem of uncertainty estimation is commonly solved in an ad-hoc manner and task dependent. For example, natural language approaches cannot be transferred to image generation. In this paper we introduce the first bias-variance-covariance decomposition for kernel scores and their associated entropy. We propose unbiased and consistent estimators for each quantity which only require generated samples but not the underlying model itself. As an application, we offer a generalization evaluation of diffusion models and discover how mode collapse of minority groups is a contrary phenomenon to overfitting. Further, we demonstrate that variance and predictive kernel entropy are viable measures of uncertainty for image, audio, and language generation. Specifically, our approach for uncertainty estimation is more predictive of performance on CoQA and TriviaQA question answering datasets than existing baselines and can also be applied to closed-source models.