SIERRA
Abstract:Conformal prediction provides a principled framework for constructing predictive sets with finite-sample validity. While much of the focus has been on univariate response variables, existing multivariate methods either impose rigid geometric assumptions or rely on flexible but computationally expensive approaches that do not explicitly optimize prediction set volume. We propose an optimization-driven framework based on a novel loss function that directly learns minimum-volume covering sets while ensuring valid coverage. This formulation naturally induces a new nonconformity score for conformal prediction, which adapts to the residual distribution and covariates. Our approach optimizes over prediction sets defined by arbitrary norm balls, including single and multi-norm formulations. Additionally, by jointly optimizing both the predictive model and predictive uncertainty, we obtain prediction sets that are tight, informative, and computationally efficient, as demonstrated in our experiments on real-world datasets.
Abstract:Conformal prediction is a powerful framework for distribution-free uncertainty quantification. The standard approach to conformal prediction relies on comparing the ranks of prediction scores: under exchangeability, the rank of a future test point cannot be too extreme relative to a calibration set. This rank-based method can be reformulated in terms of p-values. In this paper, we explore an alternative approach based on e-values, known as conformal e-prediction. E-values offer key advantages that cannot be achieved with p-values, enabling new theoretical and practical capabilities. In particular, we present three applications that leverage the unique strengths of e-values: batch anytime-valid conformal prediction, fixed-size conformal sets with data-dependent coverage, and conformal prediction under ambiguous ground truth. Overall, these examples demonstrate that e-value-based constructions provide a flexible expansion of the toolbox of conformal prediction.
Abstract:Score-based generative models achieve state-of-the-art sampling performance by denoising a distribution perturbed by Gaussian noise. In this paper, we focus on a single deterministic denoising step, and compare the optimal denoiser for the quadratic loss, we name ''full-denoising'', to the alternative ''half-denoising'' introduced by Hyv{\"a}rinen (2024). We show that looking at the performances in term of distance between distribution tells a more nuanced story, with different assumptions on the data leading to very different conclusions. We prove that half-denoising is better than full-denoising for regular enough densities, while full-denoising is better for singular densities such as mixtures of Dirac measures or densities supported on a low-dimensional subspace. In the latter case, we prove that full-denoising can alleviate the curse of dimensionality under a linear manifold hypothesis.
Abstract:We analyse the convergence of one-hidden-layer ReLU networks trained by gradient flow on $n$ data points. Our main contribution leverages the high dimensionality of the ambient space, which implies low correlation of the input samples, to demonstrate that a network with width of order $\log(n)$ neurons suffices for global convergence with high probability. Our analysis uses a Polyak-{\L}ojasiewicz viewpoint along the gradient-flow trajectory, which provides an exponential rate of convergence of $\frac{1}{n}$. When the data are exactly orthogonal, we give further refined characterizations of the convergence speed, proving its asymptotic behavior lies between the orders $\frac{1}{n}$ and $\frac{1}{\sqrt{n}}$, and exhibiting a phase-transition phenomenon in the convergence rate, during which it evolves from the lower bound to the upper, and in a relative time of order $\frac{1}{\log(n)}$.
Abstract:We develop and evaluate a structure learning algorithm for clinical time series. Clinical time series are multivariate time series observed in multiple patients and irregularly sampled, challenging existing structure learning algorithms. We assume that our times series are realizations of StructGP, a k-dimensional multi-output or multi-task stationary Gaussian process (GP), with independent patients sharing the same covariance function. StructGP encodes ordered conditional relations between time series, represented in a directed acyclic graph. We implement an adapted NOTEARS algorithm, which based on a differentiable definition of acyclicity, recovers the graph by solving a series of continuous optimization problems. Simulation results show that up to mean degree 3 and 20 tasks, we reach a median recall of 0.93% [IQR, 0.86, 0.97] while keeping a median precision of 0.71% [0.57-0.84], for recovering directed edges. We further show that the regularization path is key to identifying the graph. With StructGP, we proposed a model of time series dependencies, that flexibly adapt to different time series regularity, while enabling us to learn these dependencies from observations.
Abstract:We consider linear recurrent neural networks, which have become a key building block of sequence modeling due to their ability for stable and effective long-range modeling. In this paper, we aim at characterizing this ability on a simple but core copy task, whose goal is to build a linear filter of order $S$ that approximates the filter that looks $K$ time steps in the past (which we refer to as the shift-$K$ filter), where $K$ is larger than $S$. Using classical signal models and quadratic cost, we fully characterize the problem by providing lower bounds of approximation, as well as explicit filters that achieve this lower bound up to constants. The optimal performance highlights an uncertainty principle: the optimal filter has to average values around the $K$-th time step in the past with a range~(width) that is proportional to $K/S$.
Abstract:As platforms increasingly rely on learning algorithms, collectives may form and seek ways to influence these platforms to align with their own interests. This can be achieved by coordinated submission of altered data. To evaluate the potential impact of such behavior, it is essential to understand the computations that collectives must perform to impact platforms in this way. In particular, collectives need to make a priori assessments of the effect of the collective before taking action, as they may face potential risks when modifying their data. Moreover they need to develop implementable coordination algorithms based on quantities that can be inferred from observed data. We develop a framework that provides a theoretical and algorithmic treatment of these issues and present experimental results in a product evaluation domain.
Abstract:Regression, the task of predicting a continuous scalar target y based on some features x is one of the most fundamental tasks in machine learning and statistics. It has been observed and theoretically analyzed that the classical approach, meansquared error minimization, can lead to suboptimal results when training neural networks. In this work, we propose a new method to improve the training of these models on regression tasks, with continuous scalar targets. Our method is based on casting this task in a different fashion, using a target encoder, and a prediction decoder, inspired by approaches in classification and clustering. We showcase the performance of our method on a wide range of real-world datasets.
Abstract:We show that learning-rate schedules for large model training behave surprisingly similar to a performance bound from non-smooth convex optimization theory. We provide a bound for the constant schedule with linear cooldown; in particular, the practical benefit of cooldown is reflected in the bound due to the absence of logarithmic terms. Further, we show that this surprisingly close match between optimization theory and practice can be exploited for learning-rate tuning: we achieve noticeable improvements for training 124M and 210M Llama-type models by (i) extending the schedule for continued training with optimal learning-rate, and (ii) transferring the optimal learning-rate across schedules.
Abstract:Machine learning classifiers often produce probabilistic predictions that are critical for accurate and interpretable decision-making in various domains. The quality of these predictions is generally evaluated with proper losses like cross-entropy, which decompose into two components: calibration error assesses general under/overconfidence, while refinement error measures the ability to distinguish different classes. In this paper, we provide theoretical and empirical evidence that these two errors are not minimized simultaneously during training. Selecting the best training epoch based on validation loss thus leads to a compromise point that is suboptimal for both calibration error and, most importantly, refinement error. To address this, we introduce a new metric for early stopping and hyperparameter tuning that makes it possible to minimize refinement error during training. The calibration error is minimized after training, using standard techniques. Our method integrates seamlessly with any architecture and consistently improves performance across diverse classification tasks.