SIERRA
Abstract:In this paper, we derive variational inference upper-bounds on the log-partition function of pairwise Markov random fields on the Boolean hypercube, based on quantum relaxations of the Kullback-Leibler divergence. We then propose an efficient algorithm to compute these bounds based on primal-dual optimization. An improvement of these bounds through the use of ''hierarchies,'' similar to sum-of-squares (SoS) hierarchies is proposed, and we present a greedy algorithm to select among these relaxations. We carry extensive numerical experiments and compare with state-of-the-art methods for this inference problem.
Abstract:Adversarial training can be used to learn models that are robust against perturbations. For linear models, it can be formulated as a convex optimization problem. Compared to methods proposed in the context of deep learning, leveraging the optimization structure allows significantly faster convergence rates. Still, the use of generic convex solvers can be inefficient for large-scale problems. Here, we propose tailored optimization algorithms for the adversarial training of linear models, which render large-scale regression and classification problems more tractable. For regression problems, we propose a family of solvers based on iterative ridge regression and, for classification, a family of solvers based on projected gradient descent. The methods are based on extended variable reformulations of the original problem. We illustrate their efficiency in numerical examples.
Abstract:In this work, we propose a mean-squared error-based risk that enables the comparison and optimization of estimators of squared calibration errors in practical settings. Improving the calibration of classifiers is crucial for enhancing the trustworthiness and interpretability of machine learning models, especially in sensitive decision-making scenarios. Although various calibration (error) estimators exist in the current literature, there is a lack of guidance on selecting the appropriate estimator and tuning its hyperparameters. By leveraging the bilinear structure of squared calibration errors, we reformulate calibration estimation as a regression problem with independent and identically distributed (i.i.d.) input pairs. This reformulation allows us to quantify the performance of different estimators even for the most challenging calibration criterion, known as canonical calibration. Our approach advocates for a training-validation-testing pipeline when estimating a calibration error on an evaluation dataset. We demonstrate the effectiveness of our pipeline by optimizing existing calibration estimators and comparing them with novel kernel ridge regression-based estimators on standard image classification tasks.
Abstract:In this paper, we study the statistical and geometrical properties of the Kullback-Leibler divergence with kernel covariance operators (KKL) introduced by Bach [2022]. Unlike the classical Kullback-Leibler (KL) divergence that involves density ratios, the KKL compares probability distributions through covariance operators (embeddings) in a reproducible kernel Hilbert space (RKHS), and compute the Kullback-Leibler quantum divergence. This novel divergence hence shares parallel but different aspects with both the standard Kullback-Leibler between probability distributions and kernel embeddings metrics such as the maximum mean discrepancy. A limitation faced with the original KKL divergence is its inability to be defined for distributions with disjoint supports. To solve this problem, we propose in this paper a regularised variant that guarantees that the divergence is well defined for all distributions. We derive bounds that quantify the deviation of the regularised KKL to the original one, as well as finite-sample bounds. In addition, we provide a closed-form expression for the regularised KKL, specifically applicable when the distributions consist of finite sets of points, which makes it implementable. Furthermore, we derive a Wasserstein gradient descent scheme of the KKL divergence in the case of discrete distributions, and study empirically its properties to transport a set of points to a target distribution.
Abstract:We propose a new method for feature learning and function estimation in supervised learning via regularised empirical risk minimisation. Our approach considers functions as expectations of Sobolev functions over all possible one-dimensional projections of the data. This framework is similar to kernel ridge regression, where the kernel is $\mathbb{E}_w ( k^{(B)}(w^\top x,w^\top x^\prime))$, with $k^{(B)}(a,b) := \min(|a|, |b|)1_{ab>0}$ the Brownian kernel, and the distribution of the projections $w$ is learnt. This can also be viewed as an infinite-width one-hidden layer neural network, optimising the first layer's weights through gradient descent and explicitly adjusting the non-linearity and weights of the second layer. We introduce an efficient computation method for the estimator, called Brownian Kernel Neural Network (BKerNN), using particles to approximate the expectation. The optimisation is principled due to the positive homogeneity of the Brownian kernel. Using Rademacher complexity, we show that BKerNN's expected risk converges to the minimal risk with explicit high-probability rates of $O( \min((d/n)^{1/2}, n^{-1/6}))$ (up to logarithmic factors). Numerical experiments confirm our optimisation intuitions, and BKerNN outperforms kernel ridge regression, and favourably compares to a one-hidden layer neural network with ReLU activations in various settings and real data sets.
Abstract:Physics-informed machine learning combines the expressiveness of data-based approaches with the interpretability of physical models. In this context, we consider a general regression problem where the empirical risk is regularized by a partial differential equation that quantifies the physical inconsistency. We prove that for linear differential priors, the problem can be formulated as a kernel regression task. Taking advantage of kernel theory, we derive convergence rates for the minimizer of the regularized risk and show that it converges at least at the Sobolev minimax rate. However, faster rates can be achieved, depending on the physical error. This principle is illustrated with a one-dimensional example, supporting the claim that regularizing the empirical risk with physical information can be beneficial to the statistical performance of estimators.
Abstract:Calibration of machine learning classifiers is necessary to obtain reliable and interpretable predictions, bridging the gap between model confidence and actual probabilities. One prominent technique, isotonic regression (IR), aims at calibrating binary classifiers by minimizing the cross entropy on a calibration set via monotone transformations. IR acts as an adaptive binning procedure, which allows achieving a calibration error of zero, but leaves open the issue of the effect on performance. In this paper, we first prove that IR preserves the convex hull of the ROC curve -- an essential performance metric for binary classifiers. This ensures that a classifier is calibrated while controlling for overfitting of the calibration set. We then present a novel generalization of isotonic regression to accommodate classifiers with K classes. Our method constructs a multidimensional adaptive binning scheme on the probability simplex, again achieving a multi-class calibration error equal to zero. We regularize this algorithm by imposing a form of monotony that preserves the K-dimensional ROC surface of the classifier. We show empirically that this general monotony criterion is effective in striking a balance between reducing cross entropy loss and avoiding overfitting of the calibration set.
Abstract:We study the training dynamics of a shallow neural network with quadratic activation functions and quadratic cost in a teacher-student setup. In line with previous works on the same neural architecture, the optimization is performed following the gradient flow on the population risk, where the average over data points is replaced by the expectation over their distribution, assumed to be Gaussian.We first derive convergence properties for the gradient flow and quantify the overparameterization that is necessary to achieve a strong signal recovery. Then, assuming that the teachers and the students at initialization form independent orthonormal families, we derive a high-dimensional limit for the flow and show that the minimal overparameterization is sufficient for strong recovery. We verify by numerical experiments that these results hold for more general initializations.
Abstract:State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is an effective approach to defend against it. Formulated as a min-max problem, it searches for the best solution when the training data were corrupted by the worst-case attacks. Linear models are among the simple models where vulnerabilities can be observed and are the focus of our study. In this case, adversarial training leads to a convex optimization problem which can be formulated as the minimization of a finite sum. We provide a comparative analysis between the solution of adversarial training in linear regression and other regularization methods. Our main findings are that: (A) Adversarial training yields the minimum-norm interpolating solution in the overparameterized regime (more parameters than data), as long as the maximum disturbance radius is smaller than a threshold. And, conversely, the minimum-norm interpolator is the solution to adversarial training with a given radius. (B) Adversarial training can be equivalent to parameter shrinking methods (ridge regression and Lasso). This happens in the underparametrized region, for an appropriate choice of adversarial radius and zero-mean symmetrically distributed covariates. (C) For $\ell_\infty$-adversarial training -- as in square-root Lasso -- the choice of adversarial radius for optimal bounds does not depend on the additive noise variance. We confirm our theoretical findings with numerical examples.
Abstract:In estimation theory, the Kushner equation provides the evolution of the probability density of the state of a dynamical system given continuous-time observations. Building upon our recent work, we propose a new way to approximate the solution of the Kushner equation through tractable variational Gaussian approximations of two proximal losses associated with the propagation and Bayesian update of the probability density. The first is a proximal loss based on the Wasserstein metric and the second is a proximal loss based on the Fisher metric. The solution to this last proximal loss is given by implicit updates on the mean and covariance that we proposed earlier. These two variational updates can be fused and shown to satisfy a set of stochastic differential equations on the Gaussian's mean and covariance matrix. This Gaussian flow is consistent with the Kalman-Bucy and Riccati flows in the linear case and generalize them in the nonlinear one.