Abstract:Conformal prediction is a powerful framework for distribution-free uncertainty quantification. The standard approach to conformal prediction relies on comparing the ranks of prediction scores: under exchangeability, the rank of a future test point cannot be too extreme relative to a calibration set. This rank-based method can be reformulated in terms of p-values. In this paper, we explore an alternative approach based on e-values, known as conformal e-prediction. E-values offer key advantages that cannot be achieved with p-values, enabling new theoretical and practical capabilities. In particular, we present three applications that leverage the unique strengths of e-values: batch anytime-valid conformal prediction, fixed-size conformal sets with data-dependent coverage, and conformal prediction under ambiguous ground truth. Overall, these examples demonstrate that e-value-based constructions provide a flexible expansion of the toolbox of conformal prediction.
Abstract:As platforms increasingly rely on learning algorithms, collectives may form and seek ways to influence these platforms to align with their own interests. This can be achieved by coordinated submission of altered data. To evaluate the potential impact of such behavior, it is essential to understand the computations that collectives must perform to impact platforms in this way. In particular, collectives need to make a priori assessments of the effect of the collective before taking action, as they may face potential risks when modifying their data. Moreover they need to develop implementable coordination algorithms based on quantities that can be inferred from observed data. We develop a framework that provides a theoretical and algorithmic treatment of these issues and present experimental results in a product evaluation domain.