Abstract:We present ActiveUMI, a framework for a data collection system that transfers in-the-wild human demonstrations to robots capable of complex bimanual manipulation. ActiveUMI couples a portable VR teleoperation kit with sensorized controllers that mirror the robot's end-effectors, bridging human-robot kinematics via precise pose alignment. To ensure mobility and data quality, we introduce several key techniques, including immersive 3D model rendering, a self-contained wearable computer, and efficient calibration methods. ActiveUMI's defining feature is its capture of active, egocentric perception. By recording an operator's deliberate head movements via a head-mounted display, our system learns the crucial link between visual attention and manipulation. We evaluate ActiveUMI on six challenging bimanual tasks. Policies trained exclusively on ActiveUMI data achieve an average success rate of 70\% on in-distribution tasks and demonstrate strong generalization, retaining a 56\% success rate when tested on novel objects and in new environments. Our results demonstrate that portable data collection systems, when coupled with learned active perception, provide an effective and scalable pathway toward creating generalizable and highly capable real-world robot policies.
Abstract:Class Incremental Learning (CIL) aims to sequentially acquire knowledge of new classes without forgetting previously learned ones. Despite recent progress, current CIL methods still exhibit significant performance gaps compared to their oracle counterparts-models trained with full access to historical data. Inspired by recent insights on Linear Mode Connectivity (LMC), we revisit the geometric properties of oracle solutions in CIL and uncover a fundamental observation: these oracle solutions typically maintain low-loss linear connections to the optimum of previous tasks. Motivated by this finding, we propose Increment Vector Transformation (IVT), a novel plug-and-play framework designed to mitigate catastrophic forgetting during training. Rather than directly following CIL updates, IVT periodically teleports the model parameters to transformed solutions that preserve linear connectivity to previous task optimum. By maintaining low-loss along these connecting paths, IVT effectively ensures stable performance on previously learned tasks. The transformation is efficiently approximated using diagonal Fisher Information Matrices, making IVT suitable for both exemplar-free and exemplar-based scenarios, and compatible with various initialization strategies. Extensive experiments on CIFAR-100, FGVCAircraft, ImageNet-Subset, and ImageNet-Full demonstrate that IVT consistently enhances the performance of strong CIL baselines. Specifically, on CIFAR-100, IVT improves the last accuracy of the PASS baseline by +5.12% and reduces forgetting by 2.54%. For the CLIP-pre-trained SLCA baseline on FGVCAircraft, IVT yields gains of +14.93% in average accuracy and +21.95% in last accuracy. The code will be released.
Abstract:Trajectory prediction in multi-agent sports scenarios is inherently challenging due to the structural heterogeneity across agent roles (e.g., players vs. ball) and dynamic distribution gaps across different sports domains. Existing unified frameworks often fail to capture these structured distributional shifts, resulting in suboptimal generalization across roles and domains. We propose AdaSports-Traj, an adaptive trajectory modeling framework that explicitly addresses both intra-domain and inter-domain distribution discrepancies in sports. At its core, AdaSports-Traj incorporates a Role- and Domain-Aware Adapter to conditionally adjust latent representations based on agent identity and domain context. Additionally, we introduce a Hierarchical Contrastive Learning objective, which separately supervises role-sensitive and domain-aware representations to encourage disentangled latent structures without introducing optimization conflict. Experiments on three diverse sports datasets, Basketball-U, Football-U, and Soccer-U, demonstrate the effectiveness of our adaptive design, achieving strong performance in both unified and cross-domain trajectory prediction settings.
Abstract:Unsupervised multivariate time series (MTS) representation learning aims to extract compact and informative representations from raw sequences without relying on labels, enabling efficient transfer to diverse downstream tasks. In this paper, we propose Dual-Masked Autoencoder (DMAE), a novel masked time-series modeling framework for unsupervised MTS representation learning. DMAE formulates two complementary pretext tasks: (1) reconstructing masked values based on visible attributes, and (2) estimating latent representations of masked features, guided by a teacher encoder. To further improve representation quality, we introduce a feature-level alignment constraint that encourages the predicted latent representations to align with the teacher's outputs. By jointly optimizing these objectives, DMAE learns temporally coherent and semantically rich representations. Comprehensive evaluations across classification, regression, and forecasting tasks demonstrate that our approach achieves consistent and superior performance over competitive baselines.
Abstract:Trajectory prediction is a critical task in computer vision and autonomous systems, playing a key role in autonomous driving, robotics, surveillance, and virtual reality. Existing methods often rely on complete and noise-free observational data, overlooking the challenges associated with out-of-sight objects and the inherent noise in sensor data caused by limited camera coverage, obstructions, and the absence of ground truth for denoised trajectories. These limitations pose safety risks and hinder reliable prediction in real-world scenarios. In this extended work, we present advancements in Out-of-Sight Trajectory (OST), a novel task that predicts the noise-free visual trajectories of out-of-sight objects using noisy sensor data. Building on our previous research, we broaden the scope of Out-of-Sight Trajectory Prediction (OOSTraj) to include pedestrians and vehicles, extending its applicability to autonomous driving, robotics, surveillance, and virtual reality. Our enhanced Vision-Positioning Denoising Module leverages camera calibration to establish a vision-positioning mapping, addressing the lack of visual references, while effectively denoising noisy sensor data in an unsupervised manner. Through extensive evaluations on the Vi-Fi and JRDB datasets, our approach achieves state-of-the-art performance in both trajectory denoising and prediction, significantly surpassing previous baselines. Additionally, we introduce comparisons with traditional denoising methods, such as Kalman filtering, and adapt recent trajectory prediction models to our task, providing a comprehensive benchmark. This work represents the first initiative to integrate vision-positioning projection for denoising noisy sensor trajectories of out-of-sight agents, paving the way for future advances. The code and preprocessed datasets are available at github.com/Hai-chao-Zhang/OST
Abstract:Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.
Abstract:We present DualMat, a novel dual-path diffusion framework for estimating Physically Based Rendering (PBR) materials from single images under complex lighting conditions. Our approach operates in two distinct latent spaces: an albedo-optimized path leveraging pretrained visual knowledge through RGB latent space, and a material-specialized path operating in a compact latent space designed for precise metallic and roughness estimation. To ensure coherent predictions between the albedo-optimized and material-specialized paths, we introduce feature distillation during training. We employ rectified flow to enhance efficiency by reducing inference steps while maintaining quality. Our framework extends to high-resolution and multi-view inputs through patch-based estimation and cross-view attention, enabling seamless integration into image-to-3D pipelines. DualMat achieves state-of-the-art performance on both Objaverse and real-world data, significantly outperforming existing methods with up to 28% improvement in albedo estimation and 39% reduction in metallic-roughness prediction errors.




Abstract:Hyperparameter tuning in 3D Gaussian Splatting (3DGS) is a labor-intensive and expert-driven process, often resulting in inconsistent reconstructions and suboptimal results. We propose RLGS, a plug-and-play reinforcement learning framework for adaptive hyperparameter tuning in 3DGS through lightweight policy modules, dynamically adjusting critical hyperparameters such as learning rates and densification thresholds. The framework is model-agnostic and seamlessly integrates into existing 3DGS pipelines without architectural modifications. We demonstrate its generalization ability across multiple state-of-the-art 3DGS variants, including Taming-3DGS and 3DGS-MCMC, and validate its robustness across diverse datasets. RLGS consistently enhances rendering quality. For example, it improves Taming-3DGS by 0.7dB PSNR on the Tanks and Temple (TNT) dataset, under a fixed Gaussian budget, and continues to yield gains even when baseline performance saturates. Our results suggest that RLGS provides an effective and general solution for automating hyperparameter tuning in 3DGS training, bridging a gap in applying reinforcement learning to 3DGS.
Abstract:An increasing number of studies have focused on stochastic first-order methods (SFOMs) under heavy-tailed gradient noises, which have been observed in the training of practical deep learning models. In this paper, we focus on two types of gradient noises: one is sub-Weibull noise, and the other is noise under the assumption that it has a bounded $p$-th central moment ($p$-BCM) with $p\in (1, 2]$. The latter is more challenging due to the occurrence of infinite variance when $p\in (1, 2)$. Under these two gradient noise assumptions, the in-expectation and high-probability convergence of SFOMs have been extensively studied in the contexts of convex optimization and standard smooth optimization. However, for weakly convex objectives-a class that includes all Lipschitz-continuous convex objectives and smooth objectives-our understanding of the in-expectation and high-probability convergence of SFOMs under these two types of noises remains incomplete. We investigate the high-probability convergence of the vanilla stochastic subgradient descent (SsGD) method under sub-Weibull noises, as well as the high-probability and in-expectation convergence of clipped SsGD under the $p$-BCM noises. Both analyses are conducted in the context of weakly convex optimization. For weakly convex objectives that may be non-convex and non-smooth, our results demonstrate that the theoretical dependence of vanilla SsGD on the failure probability and number of iterations under sub-Weibull noises does not degrade compared to the case of smooth objectives. Under $p$-BCM noises, our findings indicate that the non-smoothness and non-convexity of weakly convex objectives do not impact the theoretical dependence of clipped SGD on the failure probability relative to the smooth case; however, the sample complexity we derived is worse than a well-known lower bound for smooth optimization.
Abstract:Personalized search systems in e-commerce platforms increasingly involve user interactions with AI assistants, where users consult about products, usage scenarios, and more. Leveraging consultation to personalize search services is trending. Existing methods typically rely on semantic similarity to align historical consultations with current queries due to the absence of 'value' labels, but we observe that semantic similarity alone often fails to capture the true value of consultation for personalization. To address this, we propose a consultation value assessment framework that evaluates historical consultations from three novel perspectives: (1) Scenario Scope Value, (2) Posterior Action Value, and (3) Time Decay Value. Based on this, we introduce VAPS, a value-aware personalized search model that selectively incorporates high-value consultations through a consultation-user action interaction module and an explicit objective that aligns consultations with user actions. Experiments on both public and commercial datasets show that VAPS consistently outperforms baselines in both retrieval and ranking tasks.