Abstract:Robot foundation models, particularly Vision-Language-Action (VLA) models, have garnered significant attention for their ability to enhance robot policy learning, greatly improving robot generalization and robustness. OpenAI recent model, o1, showcased impressive capabilities in solving complex problems by utilizing extensive reasoning chains. This prompts an important question: can robot models achieve better performance in multi-task, complex environments by reviewing prior observations and then providing task-specific reasoning to guide action prediction? In this paper, we introduce \textbf{Chain-of-Affordance (CoA)}, a novel approach to scaling robot models by incorporating reasoning in the format of sequential robot affordances to facilitate task completion. Specifically, we prompt the model to consider the following four types of affordances before taking action: a) object affordance - what object to manipulate and where it is; b) grasp affordance - the specific object part to grasp; c) spatial affordance - the optimal space to place the object; and d) movement affordance - the collision-free path for movement. By integrating this knowledge into the policy model, the robot gains essential context, allowing it to act with increased precision and robustness during inference. Our experiments demonstrate that CoA achieves superior performance than state-of-the-art robot foundation models, such as OpenVLA and Octo. Additionally, CoA shows strong generalization to unseen object poses, identifies free space, and avoids obstacles in novel environments.
Abstract:In this paper, we present DiffusionVLA, a novel framework that seamlessly combines the autoregression model with the diffusion model for learning visuomotor policy. Central to our approach is a next-token prediction objective, enabling the model to reason effectively over the user's query in the context of current observations. Subsequently, a diffusion model is attached to generate robust action outputs. To enhance policy learning through self-reasoning, we introduce a novel reasoning injection module that integrates reasoning phrases directly into the policy learning process. The whole framework is simple and flexible, making it easy to deploy and upgrade. We conduct extensive experiments using multiple real robots to validate the effectiveness of DiffusionVLA. Our tests include a challenging factory sorting task, where DiffusionVLA successfully categorizes objects, including those not seen during training. We observe that the reasoning module makes the model interpretable. It allows observers to understand the model thought process and identify potential causes of policy failures. Additionally, we test DiffusionVLA on a zero-shot bin-picking task, achieving 63.7\% accuracy on 102 previously unseen objects. Our method demonstrates robustness to visual changes, such as distractors and new backgrounds, and easily adapts to new embodiments. Furthermore, DiffusionVLA can follow novel instructions and retain conversational ability. Notably, DiffusionVLA is data-efficient and fast at inference; our smallest DiffusionVLA-2B runs 82Hz on a single A6000 GPU and can train from scratch on less than 50 demonstrations for a complex task. Finally, we scale the model from 2B to 72B parameters, showcasing improved generalization capabilities with increased model size.
Abstract:Learning visuomotor policy for multi-task robotic manipulation has been a long-standing challenge for the robotics community. The difficulty lies in the diversity of action space: typically, a goal can be accomplished in multiple ways, resulting in a multimodal action distribution for a single task. The complexity of action distribution escalates as the number of tasks increases. In this work, we propose \textbf{Discrete Policy}, a robot learning method for training universal agents capable of multi-task manipulation skills. Discrete Policy employs vector quantization to map action sequences into a discrete latent space, facilitating the learning of task-specific codes. These codes are then reconstructed into the action space conditioned on observations and language instruction. We evaluate our method on both simulation and multiple real-world embodiments, including both single-arm and bimanual robot settings. We demonstrate that our proposed Discrete Policy outperforms a well-established Diffusion Policy baseline and many state-of-the-art approaches, including ACT, Octo, and OpenVLA. For example, in a real-world multi-task training setting with five tasks, Discrete Policy achieves an average success rate that is 26\% higher than Diffusion Policy and 15\% higher than OpenVLA. As the number of tasks increases to 12, the performance gap between Discrete Policy and Diffusion Policy widens to 32.5\%, further showcasing the advantages of our approach. Our work empirically demonstrates that learning multi-task policies within the latent space is a vital step toward achieving general-purpose agents.
Abstract:Diffusion Policy is a powerful technique tool for learning end-to-end visuomotor robot control. It is expected that Diffusion Policy possesses scalability, a key attribute for deep neural networks, typically suggesting that increasing model size would lead to enhanced performance. However, our observations indicate that Diffusion Policy in transformer architecture (\DP) struggles to scale effectively; even minor additions of layers can deteriorate training outcomes. To address this issue, we introduce Scalable Diffusion Transformer Policy for visuomotor learning. Our proposed method, namely \textbf{\methodname}, introduces two modules that improve the training dynamic of Diffusion Policy and allow the network to better handle multimodal action distribution. First, we identify that \DP~suffers from large gradient issues, making the optimization of Diffusion Policy unstable. To resolve this issue, we factorize the feature embedding of observation into multiple affine layers, and integrate it into the transformer blocks. Additionally, our utilize non-causal attention which allows the policy network to \enquote{see} future actions during prediction, helping to reduce compounding errors. We demonstrate that our proposed method successfully scales the Diffusion Policy from 10 million to 1 billion parameters. This new model, named \methodname, can effectively scale up the model size with improved performance and generalization. We benchmark \methodname~across 50 different tasks from MetaWorld and find that our largest \methodname~outperforms \DP~with an average improvement of 21.6\%. Across 7 real-world robot tasks, our ScaleDP demonstrates an average improvement of 36.25\% over DP-T on four single-arm tasks and 75\% on three bimanual tasks. We believe our work paves the way for scaling up models for visuomotor learning. The project page is available at scaling-diffusion-policy.github.io.
Abstract:In recent years, significant progress has been made in the field of underwater image enhancement (UIE). However, its practical utility for high-level vision tasks, such as underwater object detection (UOD) in Autonomous Underwater Vehicles (AUVs), remains relatively unexplored. It may be attributed to several factors: (1) Existing methods typically employ UIE as a pre-processing step, which inevitably introduces considerable computational overhead and latency. (2) The process of enhancing images prior to training object detectors may not necessarily yield performance improvements. (3) The complex underwater environments can induce significant domain shifts across different scenarios, seriously deteriorating the UOD performance. To address these challenges, we introduce EnYOLO, an integrated real-time framework designed for simultaneous UIE and UOD with domain-adaptation capability. Specifically, both the UIE and UOD task heads share the same network backbone and utilize a lightweight design. Furthermore, to ensure balanced training for both tasks, we present a multi-stage training strategy aimed at consistently enhancing their performance. Additionally, we propose a novel domain-adaptation strategy to align feature embeddings originating from diverse underwater environments. Comprehensive experiments demonstrate that our framework not only achieves state-of-the-art (SOTA) performance in both UIE and UOD tasks, but also shows superior adaptability when applied to different underwater scenarios. Our efficiency analysis further highlights the substantial potential of our framework for onboard deployment.
Abstract:While the exploration for embodied AI has spanned multiple decades, it remains a persistent challenge to endow agents with human-level intelligence, including perception, learning, reasoning, decision-making, control, and generalization capabilities, so that they can perform general-purpose tasks in open, unstructured, and dynamic environments. Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks. They not only provide a solid cornerstone for integrating basic modules into embodied AI systems but also shed light on how to scale up robot learning from a methodological perspective. This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control. Moreover, we showcase their commonly used datasets, simulators, and benchmarks. Importantly, we emphasize the critical challenges intrinsic to this field and delineate potential avenues for future research, contributing to advancing the frontier of academic and industrial discourse.
Abstract:The language-conditioned robotic manipulation aims to transfer natural language instructions into executable actions, from simple pick-and-place to tasks requiring intent recognition and visual reasoning. Inspired by the dual process theory in cognitive science, which suggests two parallel systems of fast and slow thinking in human decision-making, we introduce Robotics with Fast and Slow Thinking (RFST), a framework that mimics human cognitive architecture to classify tasks and makes decisions on two systems based on instruction types. Our RFST consists of two key components: 1) an instruction discriminator to determine which system should be activated based on the current user instruction, and 2) a slow-thinking system that is comprised of a fine-tuned vision language model aligned with the policy networks, which allows the robot to recognize user intention or perform reasoning tasks. To assess our methodology, we built a dataset featuring real-world trajectories, capturing actions ranging from spontaneous impulses to tasks requiring deliberate contemplation. Our results, both in simulation and real-world scenarios, confirm that our approach adeptly manages intricate tasks that demand intent recognition and reasoning. The project is available at https://jlm-z.github.io/RSFT/
Abstract:Humans interpret scenes by recognizing both the identities and positions of objects in their observations. For a robot to perform tasks such as \enquote{pick and place}, understanding both what the objects are and where they are located is crucial. While the former has been extensively discussed in the literature that uses the large language model to enrich the text descriptions, the latter remains underexplored. In this work, we introduce the \textit{Object-Centric Instruction Augmentation (OCI)} framework to augment highly semantic and information-dense language instruction with position cues. We utilize a Multi-modal Large Language Model (MLLM) to weave knowledge of object locations into natural language instruction, thus aiding the policy network in mastering actions for versatile manipulation. Additionally, we present a feature reuse mechanism to integrate the vision-language features from off-the-shelf pre-trained MLLM into policy networks. Through a series of simulated and real-world robotic tasks, we demonstrate that robotic manipulator imitation policies trained with our enhanced instructions outperform those relying solely on traditional language instructions.
Abstract:Underwater image enhancement (UIE) is vital for high-level vision-related underwater tasks. Although learning-based UIE methods have made remarkable achievements in recent years, it's still challenging for them to consistently deal with various underwater conditions, which could be caused by: 1) the use of the simplified atmospheric image formation model in UIE may result in severe errors; 2) the network trained solely with synthetic images might have difficulty in generalizing well to real underwater images. In this work, we, for the first time, propose a framework \textit{SyreaNet} for UIE that integrates both synthetic and real data under the guidance of the revised underwater image formation model and novel domain adaptation (DA) strategies. First, an underwater image synthesis module based on the revised model is proposed. Then, a physically guided disentangled network is designed to predict the clear images by combining both synthetic and real underwater images. The intra- and inter-domain gaps are abridged by fully exchanging the domain knowledge. Extensive experiments demonstrate the superiority of our framework over other state-of-the-art (SOTA) learning-based UIE methods qualitatively and quantitatively. The code and dataset are publicly available at https://github.com/RockWenJJ/SyreaNet.git.
Abstract:Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.