Abstract:The zero-shot performance of visual question answering (VQA) models relies heavily on prompts. For example, a zero-shot VQA for disaster scenarios could leverage well-designed Chain of Thought (CoT) prompts to stimulate the model's potential. However, using CoT prompts has some problems, such as causing an incorrect answer in the end due to the hallucination in the thought process. In this paper, we propose a zero-shot VQA named Flood Disaster VQA with Two-Stage Prompt (VQA-TSP). The model generates the thought process in the first stage and then uses the thought process to generate the final answer in the second stage. In particular, visual context is added in the second stage to relieve the hallucination problem that exists in the thought process. Experimental results show that our method exceeds the performance of state-of-the-art zero-shot VQA models for flood disaster scenarios in total. Our study provides a research basis for improving the performance of CoT-based zero-shot VQA.
Abstract:Visual question answering (VQA) is a fundamental and essential AI task, and VQA-based disaster scenario understanding is a hot research topic. For instance, we can ask questions about a disaster image by the VQA model and the answer can help identify whether anyone or anything is affected by the disaster. However, previous VQA models for disaster damage assessment have some shortcomings, such as limited candidate answer space, monotonous question types, and limited answering capability of existing models. In this paper, we propose a zero-shot VQA model named Zero-shot VQA for Flood Disaster Damage Assessment (ZFDDA). It is a VQA model for damage assessment without pre-training. Also, with flood disaster as the main research object, we build a Freestyle Flood Disaster Image Question Answering dataset (FFD-IQA) to evaluate our VQA model. This new dataset expands the question types to include free-form, multiple-choice, and yes-no questions. At the same time, we expand the size of the previous dataset to contain a total of 2,058 images and 22,422 question-meta ground truth pairs. Most importantly, our model uses well-designed chain of thought (CoT) demonstrations to unlock the potential of the large language model, allowing zero-shot VQA to show better performance in disaster scenarios. The experimental results show that the accuracy in answering complex questions is greatly improved with CoT prompts. Our study provides a research basis for subsequent research of VQA for other disaster scenarios.
Abstract:Recent years have witnessed many successful trials in the robot learning field. For contact-rich robotic tasks, it is challenging to learn coordinated motor skills by reinforcement learning. Imitation learning solves this problem by using a mimic reward to encourage the robot to track a given reference trajectory. However, imitation learning is not so efficient and may constrain the learned motion. In this paper, we propose instruction learning, which is inspired by the human learning process and is highly efficient, flexible, and versatile for robot motion learning. Instead of using a reference signal in the reward, instruction learning applies a reference signal directly as a feedforward action, and it is combined with a feedback action learned by reinforcement learning to control the robot. Besides, we propose the action bounding technique and remove the mimic reward, which is shown to be crucial for efficient and flexible learning. We compare the performance of instruction learning with imitation learning, indicating that instruction learning can greatly speed up the training process and guarantee learning the desired motion correctly. The effectiveness of instruction learning is validated through a bunch of motion learning examples for a biped robot and a quadruped robot, where skills can be learned typically within several million steps. Besides, we also conduct sim-to-real transfer and online learning experiments on a real quadruped robot. Instruction learning has shown great merits and potential, making it a promising alternative for imitation learning.
Abstract:Open-world object detection (OWOD) is a challenging problem that combines object detection with incremental learning and open-set learning. Compared to standard object detection, the OWOD setting is task to: 1) detect objects seen during training while identifying unseen classes, and 2) incrementally learn the knowledge of the identified unknown objects when the corresponding annotations is available. We propose a novel and efficient OWOD solution from a prototype perspective, which we call OCPL: Open-world object detection via discriminative Class Prototype Learning, which consists of a Proposal Embedding Aggregator (PEA), an Embedding Space Compressor (ESC) and a Cosine Similarity-based Classifier (CSC). All our proposed modules aim to learn the discriminative embeddings of known classes in the feature space to minimize the overlapping distributions of known and unknown classes, which is beneficial to differentiate known and unknown classes. Extensive experiments performed on PASCAL VOC and MS-COCO benchmark demonstrate the effectiveness of our proposed method.
Abstract:Both goal-agnostic and goal-oriented tasks have practical value for robotic grasping: goal-agnostic tasks target all objects in the workspace, while goal-oriented tasks aim at grasping pre-assigned goal objects. However, most current grasping methods are only better at coping with one task. In this work, we propose a bifunctional push-grasping synergistic strategy for goal-agnostic and goal-oriented grasping tasks. Our method integrates pushing along with grasping to pick up all objects or pre-assigned goal objects with high action efficiency depending on the task requirement. We introduce a bifunctional network, which takes in visual observations and outputs dense pixel-wise maps of Q values for pushing and grasping primitive actions, to increase the available samples in the action space. Then we propose a hierarchical reinforcement learning framework to coordinate the two tasks by considering the goal-agnostic task as a combination of multiple goal-oriented tasks. To reduce the training difficulty of the hierarchical framework, we design a two-stage training method to train the two types of tasks separately. We perform pre-training of the model in simulation, and then transfer the learned model to the real world without any additional real-world fine-tuning. Experimental results show that the proposed approach outperforms existing methods in task completion rate and grasp success rate with less motion number. Supplementary material is available at https: //github.com/DafaRen/Learning_Bifunctional_Push-grasping_Synergistic_Strategy_for_Goal-agnostic_and_Goal-oriented_Tasks
Abstract:Accurate prediction of roll motion in high sea state is significant for the operability, safety and survivability of marine vehicles. This paper presents a novel data-driven methodology for achieving the multi-step prediction of ship roll motion in high sea states. A hybrid neural network, named ConvLSTMPNet, is proposed to execute long short-term memory (LSTM) and one-dimensional convolutional neural networks (CNN) in parallel to extract time-dependent and spatio-temporal information from multidimensional inputs. Taken KCS as the study object, the numerical solution of computational fluid dynamics method is utilized to generate the ship motion data in sea state 7 with different wave directions. An in-depth comparative study on the selection of feature space is conducted, considering the effects of time history of motion states and wave height. The comparison results demonstrate the superiority of selecting both motion states and wave heights as the feature space for multi-step prediction. In addition, the results demonstrate that ConvLSTMNet achieves more accurate than LSTM and CNN methods in multi-step prediction of roll motion, validating the efficiency of the proposed method.
Abstract:Transformers with remarkable global representation capacities achieve competitive results for visual tasks, but fail to consider high-level local pattern information in input images. In this paper, we present a generic Dual-stream Network (DS-Net) to fully explore the representation capacity of local and global pattern features for image classification. Our DS-Net can simultaneously calculate fine-grained and integrated features and efficiently fuse them. Specifically, we propose an Intra-scale Propagation module to process two different resolutions in each block and an Inter-Scale Alignment module to perform information interaction across features at dual scales. Besides, we also design a Dual-stream FPN (DS-FPN) to further enhance contextual information for downstream dense predictions. Without bells and whistles, the propsed DS-Net outperforms Deit-Small by 2.4% in terms of top-1 accuracy on ImageNet-1k and achieves state-of-the-art performance over other Vision Transformers and ResNets. For object detection and instance segmentation, DS-Net-Small respectively outperforms ResNet-50 by 6.4% and 5.5 % in terms of mAP on MSCOCO 2017, and surpasses the previous state-of-the-art scheme, which significantly demonstrates its potential to be a general backbone in vision tasks. The code will be released soon.
Abstract:Quaternion singular value decomposition (QSVD) is a robust technique of digital watermarking which can extract high quality watermarks from watermarked images with low distortion. In this paper, QSVD technique is further investigated and an efficient robust watermarking scheme is proposed. The improved algebraic structure-preserving method is proposed to handle the problem of "explosion of complexity" occurred in the conventional QSVD design. Secret information is transmitted blindly by incorporating in QSVD two new strategies, namely, coefficient pair selection and adaptive embedding. Unlike conventional QSVD which embeds watermarks in a single imaginary unit, we propose to adaptively embed the watermark into the optimal hiding position using the Normalized Cross-Correlation (NC) method. This avoids the selection of coefficient pair with less correlation, and thus, it reduces embedding impact by decreasing the maximum modification of coefficient values. In this way, compared with conventional QSVD, the proposed watermarking strategy avoids more modifications to a single color image layer and a better visual quality of the watermarked image is observed. Meanwhile, adaptive QSVD resists some common geometric attacks, and it improves the robustness of conventional QSVD. With these improvements, our method outperforms conventional QSVD. Its superiority over other state-of-the-art methods is also demonstrated experimentally.
Abstract:Instability and slowness are two main problems in deep reinforcement learning. Even if proximal policy optimization (PPO) is the state of the art, it still suffers from these two problems. We introduce an improved algorithm based on proximal policy optimization, mixed distributed proximal policy optimization (MDPPO), and show that it can accelerate and stabilize the training process. In our algorithm, multiple different policies train simultaneously and each of them controls several identical agents that interact with environments. Actions are sampled by each policy separately as usual, but the trajectories for the training process are collected from all agents, instead of only one policy. We find that if we choose some auxiliary trajectories elaborately to train policies, the algorithm will be more stable and quicker to converge especially in the environments with sparse rewards.
Abstract:Loop Closure Detection (LCD) is the essential module in the simultaneous localization and mapping (SLAM) task. In the current appearance-based SLAM methods, the visual inputs are usually affected by illumination, appearance and viewpoints changes. Comparing to the visual inputs, with the active property, light detection and ranging (LiDAR) based point-cloud inputs are invariant to the illumination and appearance changes. In this paper, we extract 3D voxel maps and 2D top view maps from LiDAR inputs, and the former could capture the local geometry into a simplified 3D voxel format, the later could capture the local road structure into a 2D image format. However, the most challenge problem is to obtain efficient features from 3D and 2D maps to against the viewpoints difference. In this paper, we proposed a synchronous adversarial feature learning method for the LCD task, which could learn the higher level abstract features from different domains without any label data. To the best of our knowledge, this work is the first to extract multi-domain adversarial features for the LCD task in real time. To investigate the performance, we test the proposed method on the KITTI odometry dataset. The extensive experiments results show that, the proposed method could largely improve LCD accuracy even under huge viewpoints differences.