Abstract:Recent studies have revealed that GNNs are highly susceptible to multiple adversarial attacks. Among these, graph backdoor attacks pose one of the most prominent threats, where attackers cause models to misclassify by learning the backdoored features with injected triggers and modified target labels during the training phase. Based on the features of the triggers, these attacks can be categorized into out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks, triggers with notable differences from the clean sample feature distributions constitute OOD backdoor attacks, whereas the triggers in ID backdoor attacks are nearly identical to the clean sample feature distributions. Existing methods can successfully defend against OOD backdoor attacks by comparing the feature distribution of triggers and clean samples but fail to mitigate stealthy ID backdoor attacks. Due to the lack of proper supervision signals, the main task accuracy is negatively affected in defending against ID backdoor attacks. To bridge this gap, we propose DMGNN against OOD and ID graph backdoor attacks that can powerfully eliminate stealthiness to guarantee defense effectiveness and improve the model performance. Specifically, DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation. To further filter the diversity of generated explainable graphs and erase the influence of the trigger features, we present a reverse sampling pruning method to screen and discard the triggers directly on the data level. Extensive experimental evaluations on open graph datasets demonstrate that DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance (within 3.5%).
Abstract:Federated recommendation systems are essential for providing personalized recommendations while protecting user privacy. However, current methods mainly rely on ID-based item embeddings, neglecting the rich multimodal information of items. To address this, we propose a Federated Multimodal Recommendation System, called FedMR. FedMR uses a foundation model on the server to encode multimodal item data, such as images and text. To handle data heterogeneity caused by user preference differences, FedMR introduces a Mixing Feature Fusion Module on each client, which adjusts fusion strategy weights based on user interaction history to generate personalized item representations that capture users' fine-grained preferences. FedMR is compatible with existing ID-based federated recommendation systems, improving performance without modifying the original framework. Experiments on four real-world multimodal datasets demonstrate FedMR's effectiveness. The code is available at https://anonymous.4open.science/r/FedMR.
Abstract:Federated recommendation systems play a crucial role in protecting user privacy. However, existing methods primarily rely on ID-based item embeddings, overlooking the rich multimodal information of items. To address this limitation, we propose a novel Federated Multimodal Recommendation System called FedMR. FedMR leverages a foundation model on the server side to encode multimodal data, such as images and text, associated with items. To tackle the challenge of data heterogeneity caused by varying user preferences, FedMR introduces a Mixing Feature Fusion Module on the client. This module dynamically adjusts the weights of different fusion strategies based on user interaction history, generating personalized item embeddings that capture fine-grained user preferences. FedMR is compatible with existing ID-based federated recommendation systems, improving their performances without modifying the original framework. Our experiments on four real-world multimodal recommendation datasets demonstrate the effectiveness of FedMR. Our code is available at https://anonymous.4open.science/r/FedMR.
Abstract:Can large language models (LLMs) directly serve as powerful world models for model-based agents? While the gaps between the prior knowledge of LLMs and the specified environment's dynamics do exist, our study reveals that the gaps can be bridged by aligning an LLM with its deployed environment and such "world alignment" can be efficiently achieved by rule learning on LLMs. Given the rich prior knowledge of LLMs, only a few additional rules suffice to align LLM predictions with the specified environment dynamics. To this end, we propose a neurosymbolic approach to learn these rules gradient-free through LLMs, by inducing, updating, and pruning rules based on comparisons of agent-explored trajectories and world model predictions. The resulting world model is composed of the LLM and the learned rules. Our embodied LLM agent "WALL-E" is built upon model-predictive control (MPC). By optimizing look-ahead actions based on the precise world model, MPC significantly improves exploration and learning efficiency. Compared to existing LLM agents, WALL-E's reasoning only requires a few principal rules rather than verbose buffered trajectories being included in the LLM input. On open-world challenges in Minecraft and ALFWorld, WALL-E achieves higher success rates than existing methods, with lower costs on replanning time and the number of tokens used for reasoning. In Minecraft, WALL-E exceeds baselines by 15-30% in success rate while costing 8-20 fewer replanning rounds and only 60-80% of tokens. In ALFWorld, its success rate surges to a new record high of 95% only after 6 iterations.
Abstract:Traditional federated learning (FL) methods often rely on fixed weighting for parameter aggregation, neglecting the mutual influence by others. Hence, their effectiveness in heterogeneous data contexts is limited. To address this problem, we propose an influence-oriented federated learning framework, namely FedC^2I, which quantitatively measures Client-level and Class-level Influence to realize adaptive parameter aggregation for each client. Our core idea is to explicitly model the inter-client influence within an FL system via the well-crafted influence vector and influence matrix. The influence vector quantifies client-level influence, enables clients to selectively acquire knowledge from others, and guides the aggregation of feature representation layers. Meanwhile, the influence matrix captures class-level influence in a more fine-grained manner to achieve personalized classifier aggregation. We evaluate the performance of FedC^2I against existing federated learning methods under non-IID settings and the results demonstrate the superiority of our method.
Abstract:Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy in a federated setting. Existing FedCF methods typically combine distributed Collaborative Filtering (CF) algorithms with privacy-preserving mechanisms, and then preserve personalized information into a user embedding vector. However, the user embedding is usually insufficient to preserve the rich information of the fine-grained personalization across heterogeneous clients. This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously. Specifically, we decompose the modeling of user knowledge into two encoders, each designed to capture shared knowledge and personalized knowledge separately. A personalized gating network is then applied to balance personalization and generalization between the global and local encoders. Moreover, to effectively train the proposed framework, we model the CF problem as a specialized Variational AutoEncoder (VAE) task by integrating user interaction vector reconstruction with missing value prediction. The decoder is trained to reconstruct the implicit feedback from items the user has interacted with, while also predicting items the user might be interested in but has not yet interacted with. Experimental results on benchmark datasets demonstrate that the proposed method outperforms other baseline methods, showcasing superior performance.
Abstract:Tackling non-IID data is an open challenge in federated learning research. Existing FL methods, including robust FL and personalized FL, are designed to improve model performance without consideration of interpreting non-IID across clients. This paper aims to design a novel FL method to robust and interpret the non-IID data across clients. Specifically, we interpret each client's dataset as a mixture of conceptual vectors that each one represents an interpretable concept to end-users. These conceptual vectors could be pre-defined or refined in a human-in-the-loop process or be learnt via the optimization procedure of the federated learning system. In addition to the interpretability, the clarity of client-specific personalization could also be applied to enhance the robustness of the training process on FL system. The effectiveness of the proposed method have been validated on benchmark datasets.
Abstract:The primary challenge in Federated Learning (FL) is to model non-IID distributions across clients, whose fine-grained structure is important to improve knowledge sharing. For example, some knowledge is globally shared across all clients, some is only transferable within a subgroup of clients, and some are client-specific. To capture and exploit this structure, we train models organized in a multi-level structure, called ``Multi-level Additive Models (MAM)'', for better knowledge-sharing across heterogeneous clients and their personalization. In federated MAM (FeMAM), each client is assigned to at most one model per level and its personalized prediction sums up the outputs of models assigned to it across all levels. For the top level, FeMAM trains one global model shared by all clients as FedAvg. For every mid-level, it learns multiple models each assigned to a subgroup of clients, as clustered FL. Every bottom-level model is trained for one client only. In the training objective, each model aims to minimize the residual of the additive predictions by the other models assigned to each client. To approximate the arbitrary structure of non-IID across clients, FeMAM introduces more flexibility and adaptivity to FL by incrementally adding new models to the prediction of each client and reassigning another if necessary, automatically optimizing the knowledge-sharing structure. Extensive experiments show that FeMAM surpasses existing clustered FL and personalized FL methods in various non-IID settings. Our code is available at https://github.com/shutong043/FeMAM.
Abstract:This paper demonstrates that pre-trained language models (PLMs) are strong foundation models for on-device meteorological variables modeling. We present LM-Weather, a generic approach to taming PLMs, that have learned massive sequential knowledge from the universe of natural language databases, to acquire an immediate capability to obtain highly customized models for heterogeneous meteorological data on devices while keeping high efficiency. Concretely, we introduce a lightweight personalized adapter into PLMs and endows it with weather pattern awareness. During communication between clients and the server, low-rank-based transmission is performed to effectively fuse the global knowledge among devices while maintaining high communication efficiency and ensuring privacy. Experiments on real-wold dataset show that LM-Weather outperforms the state-of-the-art results by a large margin across various tasks (e.g., forecasting and imputation at different scales). We provide extensive and in-depth analyses experiments, which verify that LM-Weather can (1) indeed leverage sequential knowledge from natural language to accurately handle meteorological sequence, (2) allows each devices obtain highly customized models under significant heterogeneity, and (3) generalize under data-limited and out-of-distribution (OOD) scenarios.
Abstract:With the recent success of large language models, particularly foundation models with generalization abilities, applying foundation models for recommendations becomes a new paradigm to improve existing recommendation systems. It becomes a new open challenge to enable the foundation model to capture user preference changes in a timely manner with reasonable communication and computation costs while preserving privacy. This paper proposes a novel federated adaptation mechanism to enhance the foundation model-based recommendation system in a privacy-preserving manner. Specifically, each client will learn a lightweight personalized adapter using its private data. The adapter then collaborates with pre-trained foundation models to provide recommendation service efficiently with fine-grained manners. Importantly, users' private behavioral data remains secure as it is not shared with the server. This data localization-based privacy preservation is embodied via the federated learning framework. The model can ensure that shared knowledge is incorporated into all adapters while simultaneously preserving each user's personal preferences. Experimental results on four benchmark datasets demonstrate our method's superior performance. Implementation code is available to ease reproducibility.