Abstract:In recent years, with the significant evolution of multi-modal large models, many recommender researchers realized the potential of multi-modal information for user interest modeling. In industry, a wide-used modeling architecture is a cascading paradigm: (1) first pre-training a multi-modal model to provide omnipotent representations for downstream services; (2) The downstream recommendation model takes the multi-modal representation as additional input to fit real user-item behaviours. Although such paradigm achieves remarkable improvements, however, there still exist two problems that limit model performance: (1) Representation Unmatching: The pre-trained multi-modal model is always supervised by the classic NLP/CV tasks, while the recommendation models are supervised by real user-item interaction. As a result, the two fundamentally different tasks' goals were relatively separate, and there was a lack of consistent objective on their representations; (2) Representation Unlearning: The generated multi-modal representations are always stored in cache store and serve as extra fixed input of recommendation model, thus could not be updated by recommendation model gradient, further unfriendly for downstream training. Inspired by the two difficulties challenges in downstream tasks usage, we introduce a quantitative multi-modal framework to customize the specialized and trainable multi-modal information for different downstream models.
Abstract:In large-scale content recommendation systems, retrieval serves as the initial stage in the pipeline, responsible for selecting thousands of candidate items from billions of options to pass on to ranking modules. Traditionally, the dominant retrieval method has been Embedding-Based Retrieval (EBR) using a Deep Neural Network (DNN) dual-tower structure. However, applying transformer in retrieval tasks has been the focus of recent research, though real-world industrial deployment still presents significant challenges. In this paper, we introduce KuaiFormer, a novel transformer-based retrieval framework deployed in a large-scale content recommendation system. KuaiFormer fundamentally redefines the retrieval process by shifting from conventional score estimation tasks (such as click-through rate estimate) to a transformer-driven Next Action Prediction paradigm. This shift enables more effective real-time interest acquisition and multi-interest extraction, significantly enhancing retrieval performance. KuaiFormer has been successfully integrated into Kuaishou App's short-video recommendation system since May 2024, serving over 400 million daily active users and resulting in a marked increase in average daily usage time of Kuaishou users. We provide insights into both the technical and business aspects of deploying transformer in large-scale recommendation systems, addressing practical challenges encountered during industrial implementation. Our findings offer valuable guidance for engineers and researchers aiming to leverage transformer models to optimize large-scale content recommendation systems.
Abstract:Scaling-law has guided the language model designing for past years, however, it is worth noting that the scaling laws of NLP cannot be directly applied to RecSys due to the following reasons: (1) The amount of training samples and model parameters is typically not the bottleneck for the model. Our recommendation system can generate over 50 billion user samples daily, and such a massive amount of training data can easily allow our model parameters to exceed 200 billion, surpassing many LLMs (about 100B). (2) To ensure the stability and robustness of the recommendation system, it is essential to control computational complexity FLOPs carefully. Considering the above differences with LLM, we can draw a conclusion that: for a RecSys model, compared to model parameters, the computational complexity FLOPs is a more expensive factor that requires careful control. In this paper, we propose our milestone work, MARM (Memory Augmented Recommendation Model), which explores a new cache scaling-laws successfully.
Abstract:Industrial recommendation systems (RS) rely on the multi-stage pipeline to balance effectiveness and efficiency when delivering items from a vast corpus to users. Existing RS benchmark datasets primarily focus on the exposure space, where novel RS algorithms are trained and evaluated. However, when these algorithms transition to real world industrial RS, they face a critical challenge of handling unexposed items which are a significantly larger space than the exposed one. This discrepancy profoundly impacts their practical performance. Additionally, these algorithms often overlook the intricate interplay between multiple RS stages, resulting in suboptimal overall system performance. To address this issue, we introduce RecFlow, an industrial full flow recommendation dataset designed to bridge the gap between offline RS benchmarks and the real online environment. Unlike existing datasets, RecFlow includes samples not only from the exposure space but also unexposed items filtered at each stage of the RS funnel. Our dataset comprises 38M interactions from 42K users across nearly 9M items with additional 1.9B stage samples collected from 9.3M online requests over 37 days and spanning 6 stages. Leveraging the RecFlow dataset, we conduct courageous exploration experiments, showcasing its potential in designing new algorithms to enhance effectiveness by incorporating stage-specific samples. Some of these algorithms have already been deployed online, consistently yielding significant gains. We propose RecFlow as the first comprehensive benchmark dataset for the RS community, supporting research on designing algorithms at any stage, study of selection bias, debiased algorithms, multi-stage consistency and optimality, multi-task recommendation, and user behavior modeling. The RecFlow dataset, along with the corresponding source code, is available at https://github.com/RecFlow-ICLR/RecFlow.
Abstract:In addressing the persistent challenges of data-sparsity and cold-start issues in domain-expert recommender systems, Cross-Domain Recommendation (CDR) emerges as a promising methodology. CDR aims at enhancing prediction performance in the target domain by leveraging interaction knowledge from related source domains, particularly through users or items that span across multiple domains (e.g., Short-Video and Living-Room). For academic research purposes, there are a number of distinct aspects to guide CDR method designing, including the auxiliary domain number, domain-overlapped element, user-item interaction types, and downstream tasks. With so many different CDR combination scenario settings, the proposed scenario-expert approaches are tailored to address a specific vertical CDR scenario, and often lack the capacity to adapt to multiple horizontal scenarios. In an effect to coherently adapt to various scenarios, and drawing inspiration from the concept of domain-invariant transfer learning, we extend the former SOTA model UniCDR in five different aspects, named as UniCDR+. Our work was successfully deployed on the Kuaishou Living-Room RecSys.
Abstract:Sequential Recommendation (SR) plays a pivotal role in recommender systems by tailoring recommendations to user preferences based on their non-stationary historical interactions. Achieving high-quality performance in SR requires attention to both item representation and diversity. However, designing an SR method that simultaneously optimizes these merits remains a long-standing challenge. In this study, we address this issue by integrating recent generative Diffusion Models (DM) into SR. DM has demonstrated utility in representation learning and diverse image generation. Nevertheless, a straightforward combination of SR and DM leads to sub-optimal performance due to discrepancies in learning objectives (recommendation vs. noise reconstruction) and the respective learning spaces (non-stationary vs. stationary). To overcome this, we propose a novel framework called DimeRec (\textbf{Di}ffusion with \textbf{m}ulti-interest \textbf{e}nhanced \textbf{Rec}ommender). DimeRec synergistically combines a guidance extraction module (GEM) and a generative diffusion aggregation module (DAM). The GEM extracts crucial stationary guidance signals from the user's non-stationary interaction history, while the DAM employs a generative diffusion process conditioned on GEM's outputs to reconstruct and generate consistent recommendations. Our numerical experiments demonstrate that DimeRec significantly outperforms established baseline methods across three publicly available datasets. Furthermore, we have successfully deployed DimeRec on a large-scale short video recommendation platform, serving hundreds of millions of users. Live A/B testing confirms that our method improves both users' time spent and result diversification.
Abstract:State-of-the-art sequential recommendation models heavily rely on transformer's attention mechanism. However, the quadratic computational and memory complexities of self attention have limited its scalability for modeling users' long range behaviour sequences. To address this problem, we propose ELASTIC, an Efficient Linear Attention for SequenTial Interest Compression, requiring only linear time complexity and decoupling model capacity from computational cost. Specifically, ELASTIC introduces a fixed length interest experts with linear dispatcher attention mechanism which compresses the long-term behaviour sequences to a significantly more compact representation which reduces up to 90% GPU memory usage with x2.7 inference speed up. The proposed linear dispatcher attention mechanism significantly reduces the quadratic complexity and makes the model feasible for adequately modeling extremely long sequences. Moreover, in order to retain the capacity for modeling various user interests, ELASTIC initializes a vast learnable interest memory bank and sparsely retrieves compressed user's interests from the memory with a negligible computational overhead. The proposed interest memory retrieval technique significantly expands the cardinality of available interest space while keeping the same computational cost, thereby striking a trade-off between recommendation accuracy and efficiency. To validate the effectiveness of our proposed ELASTIC, we conduct extensive experiments on various public datasets and compare it with several strong sequential recommenders. Experimental results demonstrate that ELASTIC consistently outperforms baselines by a significant margin and also highlight the computational efficiency of ELASTIC when modeling long sequences. We will make our implementation code publicly available.
Abstract:Kuaishou, is one of the largest short-video and live-streaming platform, compared with short-video recommendations, live-streaming recommendation is more complex because of: (1) temporarily-alive to distribution, (2) user may watch for a long time with feedback delay, (3) content is unpredictable and changes over time. Actually, even if a user is interested in the live-streaming author, it still may be an negative watching (e.g., short-view < 3s) since the real-time content is not attractive enough. Therefore, for live-streaming recommendation, there exists a challenging task: how do we recommend the live-streaming at right moment for users? Additionally, our platform's major exposure content is short short-video, and the amount of exposed short-video is 9x more than exposed live-streaming. Thus users will leave more behaviors on short-videos, which leads to a serious data imbalance problem making the live-streaming data could not fully reflect user interests. In such case, there raises another challenging task: how do we utilize users' short-video behaviors to make live-streaming recommendation better?
Abstract:In this paper, we present the practical problems and the lessons learned at short-video services from Kuaishou. In industry, a widely-used multi-task framework is the Mixture-of-Experts (MoE) paradigm, which always introduces some shared and specific experts for each task and then uses gate networks to measure related experts' contributions. Although the MoE achieves remarkable improvements, we still observe three anomalies that seriously affect model performances in our iteration: (1) Expert Collapse: We found that experts' output distributions are significantly different, and some experts have over 90% zero activations with ReLU, making it hard for gate networks to assign fair weights to balance experts. (2) Expert Degradation: Ideally, the shared-expert aims to provide predictive information for all tasks simultaneously. Nevertheless, we find that some shared-experts are occupied by only one task, which indicates that shared-experts lost their ability but degenerated into some specific-experts. (3) Expert Underfitting: In our services, we have dozens of behavior tasks that need to be predicted, but we find that some data-sparse prediction tasks tend to ignore their specific-experts and assign large weights to shared-experts. The reason might be that the shared-experts can perceive more gradient updates and knowledge from dense tasks, while specific-experts easily fall into underfitting due to their sparse behaviors. Motivated by those observations, we propose HoME to achieve a simple, efficient and balanced MoE system for multi-task learning.
Abstract:Live streaming services are becoming increasingly popular due to real-time interactions and entertainment. Viewers can chat and send comments or virtual gifts to express their preferences for the streamers. Accurately modeling the gifting interaction not only enhances users' experience but also increases streamers' revenue. Previous studies on live streaming gifting prediction treat this task as a conventional recommendation problem, and model users' preferences using categorical data and observed historical behaviors. However, it is challenging to precisely describe the real-time content changes in live streaming using limited categorical information. Moreover, due to the sparsity of gifting behaviors, capturing the preferences and intentions of users is quite difficult. In this work, we propose MMBee based on real-time Multi-Modal Fusion and Behaviour Expansion to address these issues. Specifically, we first present a Multi-modal Fusion Module with Learnable Query (MFQ) to perceive the dynamic content of streaming segments and process complex multi-modal interactions, including images, text comments and speech. To alleviate the sparsity issue of gifting behaviors, we present a novel Graph-guided Interest Expansion (GIE) approach that learns both user and streamer representations on large-scale gifting graphs with multi-modal attributes. Comprehensive experiment results show that MMBee achieves significant performance improvements on both public datasets and Kuaishou real-world streaming datasets and the effectiveness has been further validated through online A/B experiments. MMBee has been deployed and is serving hundreds of millions of users at Kuaishou.