Shenzhen University
Abstract:MLLMs have demonstrated remarkable comprehension and reasoning capabilities with complex language and visual data. These advances have spurred the vision of establishing a generalist robotic MLLM proficient in understanding complex human instructions and accomplishing various embodied tasks. However, developing MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms. In contrast, the inference of MLLMs involves storing billions of parameters and performing tremendous computation, imposing significant hardware demands. In our paper, we propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR-VLA, or simply DeeR) that automatically adjusts the size of the activated MLLM based on each situation at hand. The approach leverages a multi-exit architecture in MLLMs, which allows the model to terminate processing once a proper size of the model has been activated for a specific situation, thus avoiding further redundant computation. Additionally, we develop novel algorithms that establish early-termination criteria for DeeR, conditioned on predefined demands such as average computational cost (i.e., power consumption), as well as peak computational consumption (i.e., latency) and GPU memory usage. These enhancements ensure that DeeR operates efficiently under varying resource constraints while maintaining competitive performance. On the CALVIN robot manipulation benchmark, DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance. Code and checkpoints are available at https://github.com/yueyang130/DeeR-VLA.
Abstract:OpenAI's Sora highlights the potential of video generation for developing world models that adhere to fundamental physical laws. However, the ability of video generation models to discover such laws purely from visual data without human priors can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. This provides an unlimited supply of data for large-scale experimentation and enables quantitative evaluation of whether the generated videos adhere to physical laws. We trained diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit "case-based" generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws, despite its role in Sora's broader success. See our project page at https://phyworld.github.io
Abstract:In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected. The system's behavior is primarily driven by parameters such as instructions or tool definitions. Recent advancements enable end-to-end optimization of these parameters using an LLM. Notably, leveraging an LLM as an optimizer is particularly efficient because it avoids gradient computation and can generate complex code and instructions. This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems. It covers archetypes of compound AI systems, approaches to LLM-based end-to-end optimization, and insights into future directions and broader impacts. Importantly, this survey uses concepts from program analysis to provide a unified view of how an LLM optimizer is prompted to optimize a compound AI system. The exhaustive list of paper is provided at https://github.com/linyuhongg/LLM-based-Optimization-of-Compound-AI-Systems.
Abstract:Scientific social stratification is a classic theme in the sociology of science. The deep integration of social media has bridged the gap between scientometrics and sociology of science. This study comprehensively analyzes the impact of social media on scientific stratification and mobility, delving into the complex interplay between academic status and social media activity in the digital age. [Research Method] Innovatively, this paper employs An Explainable Logistic Attribution Analysis from a meso-level perspective to explore the correlation between social media behaviors and scientific social stratification. It examines the impact of scientists' use of social media in the digital age on scientific stratification and mobility, uniquely combining statistical methods with machine learning. This fusion effectively integrates hypothesis testing with a substantive interpretation of the contribution of independent variables to the model. [Research Conclusion] Empirical evidence demonstrates that social media promotes stratification and mobility within the scientific community, revealing a nuanced and non-linear facilitation mechanism. Social media activities positively impact scientists' status within the scientific social hierarchy to a certain extent, but beyond a specific threshold, this impact turns negative. It shows that the advent of social media has opened new channels for academic influence, transcending the limitations of traditional academic publishing, and prompting changes in scientific stratification. Additionally, the study acknowledges the limitations of its experimental design and suggests future research directions.
Abstract:Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.
Abstract:This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
Abstract:The superior performance of modern visual backbones usually comes with a costly training procedure. We contribute to this issue by generalizing the idea of curriculum learning beyond its original formulation, i.e., training models using easier-to-harder data. Specifically, we reformulate the training curriculum as a soft-selection function, which uncovers progressively more difficult patterns within each example during training, instead of performing easier-to-harder sample selection. Our work is inspired by an intriguing observation on the learning dynamics of visual backbones: during the earlier stages of training, the model predominantly learns to recognize some 'easier-to-learn' discriminative patterns in the data. These patterns, when observed through frequency and spatial domains, incorporate lower-frequency components, and the natural image contents without distortion or data augmentation. Motivated by these findings, we propose a curriculum where the model always leverages all the training data at every learning stage, yet the exposure to the 'easier-to-learn' patterns of each example is initiated first, with harder patterns gradually introduced as training progresses. To implement this idea in a computationally efficient way, we introduce a cropping operation in the Fourier spectrum of the inputs, enabling the model to learn from only the lower-frequency components. Then we show that exposing the contents of natural images can be readily achieved by modulating the intensity of data augmentation. Finally, we integrate these aspects and design curriculum schedules with tailored search algorithms. The resulting method, EfficientTrain++, is simple, general, yet surprisingly effective. It reduces the training time of a wide variety of popular models by 1.5-3.0x on ImageNet-1K/22K without sacrificing accuracy. It also demonstrates efficacy in self-supervised learning (e.g., MAE).
Abstract:Individual trajectories, rich in human-environment interaction information across space and time, serve as vital inputs for geospatial foundation models (GeoFMs). However, existing attempts at learning trajectory representations have overlooked the implicit spatial-temporal dependency within trajectories, failing to encode such dependency in a deep learning-friendly format. That poses a challenge in obtaining general-purpose trajectory representations. Therefore, this paper proposes a spatial-temporal joint representation learning method (ST-GraphRL) to formalize learnable spatial-temporal dependencies into trajectory representations. The proposed ST-GraphRL consists of three compositions: (i) a weighted directed spatial-temporal graph to explicitly construct mobility interactions in both space and time dimensions; (ii) a two-stage jointly encoder (i.e., decoupling and fusion), to learn entangled spatial-temporal dependencies by independently decomposing and jointly aggregating space and time information; (iii) a decoder guides ST-GraphRL to learn explicit mobility regularities by simulating the spatial-temporal distributions of trajectories. Tested on three real-world human mobility datasets, the proposed ST-GraphRL outperformed all the baseline models in predicting movement spatial-temporal distributions and preserving trajectory similarity with high spatial-temporal correlations. Analyzing spatial-temporal features presented in latent space validates that ST-GraphRL understands spatial-temporal patterns. This study may also benefit representation learnings of other geospatial data to achieve general-purpose data representations and advance GeoFMs development.
Abstract:The divergence of the Q-value estimation has been a prominent issue in offline RL, where the agent has no access to real dynamics. Traditional beliefs attribute this instability to querying out-of-distribution actions when bootstrapping value targets. Though this issue can be alleviated with policy constraints or conservative Q estimation, a theoretical understanding of the underlying mechanism causing the divergence has been absent. In this work, we aim to thoroughly comprehend this mechanism and attain an improved solution. We first identify a fundamental pattern, self-excitation, as the primary cause of Q-value estimation divergence in offline RL. Then, we propose a novel Self-Excite Eigenvalue Measure (SEEM) metric based on Neural Tangent Kernel (NTK) to measure the evolving property of Q-network at training, which provides an intriguing explanation of the emergence of divergence. For the first time, our theory can reliably decide whether the training will diverge at an early stage, and even predict the order of the growth for the estimated Q-value, the model's norm, and the crashing step when an SGD optimizer is used. The experiments demonstrate perfect alignment with this theoretic analysis. Building on our insights, we propose to resolve divergence from a novel perspective, namely improving the model's architecture for better extrapolating behavior. Through extensive empirical studies, we identify LayerNorm as a good solution to effectively avoid divergence without introducing detrimental bias, leading to superior performance. Experimental results prove that it can still work in some most challenging settings, i.e. using only 1 transitions of the dataset, where all previous methods fail. Moreover, it can be easily plugged into modern offline RL methods and achieve SOTA results on many challenging tasks. We also give unique insights into its effectiveness.
Abstract:Offline reinforcement learning (RL) is challenged by the distributional shift problem. To address this problem, existing works mainly focus on designing sophisticated policy constraints between the learned policy and the behavior policy. However, these constraints are applied equally to well-performing and inferior actions through uniform sampling, which might negatively affect the learned policy. To alleviate this issue, we propose Offline Prioritized Experience Replay (OPER), featuring a class of priority functions designed to prioritize highly-rewarding transitions, making them more frequently visited during training. Through theoretical analysis, we show that this class of priority functions induce an improved behavior policy, and when constrained to this improved policy, a policy-constrained offline RL algorithm is likely to yield a better solution. We develop two practical strategies to obtain priority weights by estimating advantages based on a fitted value network (OPER-A) or utilizing trajectory returns (OPER-R) for quick computation. OPER is a plug-and-play component for offline RL algorithms. As case studies, we evaluate OPER on five different algorithms, including BC, TD3+BC, Onestep RL, CQL, and IQL. Extensive experiments demonstrate that both OPER-A and OPER-R significantly improve the performance for all baseline methods. Codes and priority weights are availiable at https://github.com/sail-sg/OPER.