Abstract:Recent advances in automated theorem proving (ATP) through LLMs have highlighted the potential of formal reasoning with Lean 4 codes. However, ATP has not yet be revolutionized by the recent posttraining scaling as demonstrated by Open AI O1/O3 and Deepseek R1. In this work, we investigate the entire posttraining of ATP, aiming to align it with breakthroughs in reasoning models in natural languages. To begin, we continual train current ATP models with a hybrid dataset, which consists of numerous statement-proof pairs, and additional data aimed at incorporating cognitive behaviors that emulate human reasoning and hypothesis refinement. Next, we explore reinforcement learning with the use of outcome reward returned by Lean 4 compiler. Through our designed continual training and reinforcement learning processes, we have successfully improved existing formal provers, including both DeepSeek-Prover-v1.5 and Goedel-Prover, achieving state-of-the-art performance in the field of whole-proof generation. For example, we achieve a 59.8% pass rate (pass@32) on MiniF2F. This is an on-going project and we will progressively update our findings, release our data and training details.
Abstract:Chinese pinyin input methods are very important for Chinese language processing. Actually, users may make typos inevitably when they input pinyin. Moreover, pinyin typo correction has become an increasingly important task with the popularity of smartphones and the mobile Internet. How to exploit the knowledge of users typing behaviors and support the typo correction for acronym pinyin remains a challenging problem. To tackle these challenges, we propose KNPTC, a novel approach based on neural machine translation (NMT). In contrast to previous work, KNPTC is able to integrate explicit knowledge into NMT for pinyin typo correction, and is able to learn to correct a variety of typos without the guidance of manually selected constraints or languagespecific features. In this approach, we first obtain the transition probabilities between adjacent letters based on large-scale real-life datasets. Then, we construct the "ground-truth" alignments of training sentence pairs by utilizing these probabilities. Furthermore, these alignments are integrated into NMT to capture sensible pinyin typo correction patterns. KNPTC is applied to correct typos in real-life datasets, which achieves 32.77% increment on average in accuracy rate of typo correction compared against the state-of-the-art system.