University of Science and Technology of China
Abstract:Large Language Models (LLMs) are commonly trained on multilingual corpora that include Greek, yet reliable evaluation benchmarks for Greek-particularly those based on authentic, native-sourced content-remain limited. Existing datasets are often machine-translated from English, failing to capture Greek linguistic and cultural characteristics. We introduce GreekMMLU, a native-sourced benchmark for massive multitask language understanding in Greek, comprising 21,805 multiple-choice questions across 45 subject areas, organized under a newly defined subject taxonomy and annotated with educational difficulty levels spanning primary to professional examinations. All questions are sourced or authored in Greek from academic, professional, and governmental exams. We publicly release 16,857 samples and reserve 4,948 samples for a private leaderboard to enable robust and contamination-resistant evaluation. Evaluations of over 80 open- and closed-source LLMs reveal substantial performance gaps between frontier and open-weight models, as well as between Greek-adapted models and general multilingual ones. Finally, we provide a systematic analysis of factors influencing performance-including model scale, adaptation, and prompting-and derive insights for improving LLM capabilities in Greek.
Abstract:The integration of reinforcement learning (RL) into large language models (LLMs) has opened new opportunities for recommender systems by eliciting reasoning and improving user preference modeling. However, RL-based LLM recommendation faces significant efficiency challenges, making full-data training costly. Existing data selection methods define sample value based on learnability or representativeness, yet their loss- or gradient-driven or dataset coverage-driven criteria often misalign with RL learning dynamics, resulting in suboptimal performance. To address this, we propose MiniRec, a data selection framework tailored for RL-based LLM recommendation. MiniRec evaluates sample learnability using key RL signals -- rewards -- pruning samples that are too easy (too high reward) or too difficult (consistently low reward). It assesses representativeness by aligning sample gradients with the approximated "ideal" global RL optimization trajectory, selecting samples that mainly drive model updates, and it also enforces diversity to reduce redundancy. Combined with a curriculum learning strategy from easy to hard samples, MiniRec significantly reduces training cost while largely preserving performance. Extensive experiments demonstrate MiniRec's effectiveness, highlighting the importance of reward-aligned, trajectory-informed data selection in RL-based LLM recommendation.
Abstract:Recent advances align diffusion models with human preferences to increase aesthetic appeal and mitigate artifacts and biases. Such methods aim to maximize a conditional output distribution aligned with higher rewards whilst not drifting far from a pretrained prior. This is commonly enforced by KL (Kullback Leibler) regularization. As such, a central issue still remains: how does one choose the right regularization strength? Too high of a strength leads to limited alignment and too low of a strength leads to "reward hacking". This renders the task of choosing the correct regularization strength highly non-trivial. Existing approaches sweep over this hyperparameter by aligning a pretrained model at multiple regularization strengths and then choose the best strength. Unfortunately, this is prohibitively expensive. We introduce DeRaDiff, a denoising time realignment procedure that, after aligning a pretrained model once, modulates the regularization strength during sampling to emulate models trained at other regularization strengths without any additional training or finetuning. Extending decoding-time realignment from language to diffusion models, DeRaDiff operates over iterative predictions of continuous latents by replacing the reverse step reference distribution by a geometric mixture of an aligned and reference posterior, thus giving rise to a closed form update under common schedulers and a single tunable parameter, lambda, for on the fly control. Our experiments show that across multiple text image alignment and image-quality metrics, our method consistently provides a strong approximation for models aligned entirely from scratch at different regularization strengths. Thus, our method yields an efficient way to search for the optimal strength, eliminating the need for expensive alignment sweeps and thereby substantially reducing computational costs.
Abstract:Item indexing, which maps a large corpus of items into compact discrete representations, is critical for both discriminative and generative recommender systems, yet existing Vector Quantization (VQ)-based approaches struggle with the highly skewed and non-stationary item distributions common in streaming industry recommenders, leading to poor assignment accuracy, imbalanced cluster occupancy, and insufficient cluster separation. To address these challenges, we propose MERGE, a next-generation item indexing paradigm that adaptively constructs clusters from scratch, dynamically monitors cluster occupancy, and forms hierarchical index structures via fine-to-coarse merging. Extensive experiments demonstrate that MERGE significantly improves assignment accuracy, cluster uniformity, and cluster separation compared with existing indexing methods, while online A/B tests show substantial gains in key business metrics, highlighting its potential as a foundational indexing approach for large-scale recommendation.
Abstract:The proliferation of XR devices has made egocentric hand pose estimation a vital task, yet this perspective is inherently challenged by frequent finger occlusions. To address this, we propose a novel approach that leverages the rich information in dorsal hand skin deformation, unlocked by recent advances in dense visual featurizers. We introduce a dual-stream delta encoder that learns pose by contrasting features from a dynamic hand with a baseline relaxed position. Our evaluation demonstrates that, using only cropped dorsal images, our method reduces the Mean Per Joint Angle Error (MPJAE) by 18% in self-occluded scenarios (fingers >= 50% occluded) compared to state-of-the-art techniques that depend on the whole hand's geometry and large model backbones. Consequently, our method not only enhances the reliability of downstream tasks like index finger pinch and tap estimation in occluded scenarios but also unlocks new interaction paradigms, such as detecting isometric force for a surface "click" without visible movement while minimizing model size.
Abstract:Generative recommendation has recently emerged as a transformative paradigm that directly generates target items, surpassing traditional cascaded approaches. It typically involves two components: a tokenizer that learns item identifiers and a recommender trained on them. Existing methods often decouple tokenization from recommendation or rely on asynchronous alternating optimization, limiting full end-to-end alignment. To address this, we unify the tokenizer and recommender under the ultimate recommendation objective via differentiable soft item identifiers, enabling joint end-to-end training. However, this introduces three challenges: training-inference discrepancy due to soft-to-hard mismatch, item identifier collapse from codeword usage imbalance, and collaborative signal deficiency due to an overemphasis on fine-grained token-level semantics. To tackle these challenges, we propose UniGRec, a unified generative recommendation framework that addresses them from three perspectives. UniGRec employs Annealed Inference Alignment during tokenization to smoothly bridge soft training and hard inference, a Codeword Uniformity Regularization to prevent identifier collapse and encourage codebook diversity, and a Dual Collaborative Distillation mechanism that distills collaborative priors from a lightweight teacher model to jointly guide both the tokenizer and the recommender. Extensive experiments on real-world datasets demonstrate that UniGRec consistently outperforms state-of-the-art baseline methods. Our codes are available at https://github.com/Jialei-03/UniGRec.
Abstract:Explainable AI (XAI) is crucial for building transparent and trustworthy machine learning systems, especially in high-stakes domains. Concept Bottleneck Models (CBMs) have emerged as a promising ante-hoc approach that provides interpretable, concept-level explanations by explicitly modeling human-understandable concepts. However, existing CBMs often suffer from poor locality faithfulness, failing to spatially align concepts with meaningful image regions, which limits their interpretability and reliability. In this work, we propose SL-CBM (CBM with Semantic Locality), a novel extension that enforces locality faithfulness by generating spatially coherent saliency maps at both concept and class levels. SL-CBM integrates a 1x1 convolutional layer with a cross-attention mechanism to enhance alignment between concepts, image regions, and final predictions. Unlike prior methods, SL-CBM produces faithful saliency maps inherently tied to the model's internal reasoning, facilitating more effective debugging and intervention. Extensive experiments on image datasets demonstrate that SL-CBM substantially improves locality faithfulness, explanation quality, and intervention efficacy while maintaining competitive classification accuracy. Our ablation studies highlight the importance of contrastive and entropy-based regularization for balancing accuracy, sparsity, and faithfulness. Overall, SL-CBM bridges the gap between concept-based reasoning and spatial explainability, setting a new standard for interpretable and trustworthy concept-based models.
Abstract:Robust local navigation in unstructured and dynamic environments remains a significant challenge for humanoid robots, requiring a delicate balance between long-range navigation targets and immediate motion stability. In this paper, we propose FocusNav, a spatial selective attention framework that adaptively modulates the robot's perceptual field based on navigational intent and real-time stability. FocusNav features a Waypoint-Guided Spatial Cross-Attention (WGSCA) mechanism that anchors environmental feature aggregation to a sequence of predicted collision-free waypoints, ensuring task-relevant perception along the planned trajectory. To enhance robustness in complex terrains, the Stability-Aware Selective Gating (SASG) module autonomously truncates distal information when detecting instability, compelling the policy to prioritize immediate foothold safety. Extensive experiments on the Unitree G1 humanoid robot demonstrate that FocusNav significantly improves navigation success rates in challenging scenarios, outperforming baselines in both collision avoidance and motion stability, achieving robust navigation in dynamic and complex environments.
Abstract:Music generative artificial intelligence (AI) is rapidly expanding music content, necessitating automated song aesthetics evaluation. However, existing studies largely focus on speech, audio or singing quality, leaving song aesthetics underexplored. Moreover, conventional approaches often predict a precise Mean Opinion Score (MOS) value directly, which struggles to capture the nuances of human perception in song aesthetics evaluation. This paper proposes a song-oriented aesthetics evaluation framework, featuring two novel modules: 1) Multi-Stem Attention Fusion (MSAF) builds bidirectional cross-attention between mixture-vocal and mixture-accompaniment pairs, fusing them to capture complex musical features; 2) Hierarchical Granularity-Aware Interval Aggregation (HiGIA) learns multi-granularity score probability distributions, aggregates them into a score interval, and applies a regression within the interval to produce the final score. We evaluated on two datasets of full-length songs: SongEval dataset (AI-generated) and an internal aesthetics dataset (human-created), and compared with two state-of-the-art (SOTA) models. Results show that the proposed method achieves stronger performance for multi-dimensional song aesthetics evaluation.
Abstract:Personalization in Large Language Models (LLMs) often relies on user-specific soft prompts. However, these prompts become obsolete when the foundation model is upgraded, necessitating costly, full-scale retraining. To overcome this limitation, we propose the Prompt-level User Migration Adapter (PUMA), a lightweight framework to efficiently migrate personalized prompts across incompatible models. PUMA utilizes a parameter-efficient adapter to bridge the semantic gap, combined with a group-based user selection strategy to significantly reduce training costs. Experiments on three large-scale datasets show our method matches or even surpasses the performance of retraining from scratch, reducing computational cost by up to 98%. The framework demonstrates strong generalization across diverse model architectures and robustness in advanced scenarios like chained and aggregated migrations, offering a practical path for the sustainable evolution of personalized AI by decoupling user assets from the underlying models.