Abstract:Multimodal representation learning harmonizes distinct modalities by aligning them into a unified latent space. Recent research generalizes traditional cross-modal alignment to produce enhanced multimodal synergy but requires all modalities to be present for a common instance, making it challenging to utilize prevalent datasets with missing modalities. We provide theoretical insights into this issue from an anchor shift perspective. Observed modalities are aligned with a local anchor that deviates from the optimal one when all modalities are present, resulting in an inevitable shift. To address this, we propose CalMRL for multimodal representation learning to calibrate incomplete alignments caused by missing modalities. Specifically, CalMRL leverages the priors and the inherent connections among modalities to model the imputation for the missing ones at the representation level. To resolve the optimization dilemma, we employ a bi-step learning method with the closed-form solution of the posterior distribution of shared latents. We validate its mitigation of anchor shift and convergence with theoretical guidance. By equipping the calibrated alignment with the existing advanced method, we offer new flexibility to absorb data with missing modalities, which is originally unattainable. Extensive experiments and comprehensive analyses demonstrate the superiority of CalMRL. Our code, model checkpoints, and evaluation raw data will be publicly available.
Abstract:Recent advances in unified multimodal models (UMMs) have enabled impressive progress in visual comprehension and generation. However, existing datasets and benchmarks focus primarily on single-turn interactions, failing to capture the multi-turn, context-dependent nature of real-world image creation and editing. To address this gap, we present WEAVE, the first suite for in-context interleaved cross-modality comprehension and generation. Our suite consists of two complementary parts. WEAVE-100k is a large-scale dataset of 100K interleaved samples spanning over 370K dialogue turns and 500K images, covering comprehension, editing, and generation tasks that require reasoning over historical context. WEAVEBench is a human-annotated benchmark with 100 tasks based on 480 images, featuring a hybrid VLM judger evaluation framework based on both the reference image and the combination of the original image with editing instructions that assesses models' abilities in multi-turn generation, visual memory, and world-knowledge reasoning across diverse domains. Experiments demonstrate that training on WEAVE-100k enables vision comprehension, image editing, and comprehension-generation collaboration capabilities. Furthermore, it facilitates UMMs to develop emergent visual-memory capabilities, while extensive evaluations on WEAVEBench expose the persistent limitations and challenges of current approaches in multi-turn, context-aware image generation and editing. We believe WEAVE provides a view and foundation for studying in-context interleaved comprehension and generation for multi-modal community.
Abstract:While Large Language Models have been used to produce interpretable stock forecasts, they mainly focus on analyzing textual reports but not historical price data, also known as Technical Analysis. This task is challenging as it switches between domains: the stock price inputs and outputs lie in the time-series domain, while the reasoning step should be in natural language. In this work, we introduce Verbal Technical Analysis (VTA), a novel framework that combine verbal and latent reasoning to produce stock time-series forecasts that are both accurate and interpretable. To reason over time-series, we convert stock price data into textual annotations and optimize the reasoning trace using an inverse Mean Squared Error (MSE) reward objective. To produce time-series outputs from textual reasoning, we condition the outputs of a time-series backbone model on the reasoning-based attributes. Experiments on stock datasets across U.S., Chinese, and European markets show that VTA achieves state-of-the-art forecasting accuracy, while the reasoning traces also perform well on evaluation by industry experts.
Abstract:Video Foundation Models (VFMs) exhibit remarkable visual generation performance, but struggle in compositional scenarios (e.g., motion, numeracy, and spatial relation). In this work, we introduce Test-Time Optimization and Memorization (TTOM), a training-free framework that aligns VFM outputs with spatiotemporal layouts during inference for better text-image alignment. Rather than direct intervention to latents or attention per-sample in existing work, we integrate and optimize new parameters guided by a general layout-attention objective. Furthermore, we formulate video generation within a streaming setting, and maintain historical optimization contexts with a parametric memory mechanism that supports flexible operations, such as insert, read, update, and delete. Notably, we found that TTOM disentangles compositional world knowledge, showing powerful transferability and generalization. Experimental results on the T2V-CompBench and Vbench benchmarks establish TTOM as an effective, practical, scalable, and efficient framework to achieve cross-modal alignment for compositional video generation on the fly.




Abstract:Multimodal representation learning seeks to create a unified representation space by integrating diverse data modalities to improve multimodal understanding. Traditional methods often depend on pairwise contrastive learning, which relies on a predefined anchor modality, restricting alignment across all modalities. Recent advances have investigated the simultaneous alignment of multiple modalities, yet several challenges remain, such as limitations imposed by fixed anchor points and instability arising from optimizing the product of singular values. To address the challenges, in this paper, we propose Principled Multimodal Representation Learning (PMRL), a novel framework that achieves simultaneous alignment of multiple modalities without anchor dependency in a more stable manner. Specifically, grounded in the theoretical insight that full alignment corresponds to a rank-1 Gram matrix, PMRL optimizes the dominant singular value of the representation matrix to align modalities along a shared leading direction. We propose a softmax-based loss function that treats singular values as logits to prioritize the largest singular value. Besides, instance-wise contrastive regularization on the leading eigenvectors maintains inter-instance separability and prevents representation collapse. Extensive experiments across diverse tasks demonstrate PMRL's superiority compared to baseline methods. The source code will be publicly available.
Abstract:Graphical User Interface (GUI) agents powered by Large Vision-Language Models (LVLMs) have emerged as a revolutionary approach to automating human-machine interactions, capable of autonomously operating personal devices (e.g., mobile phones) or applications within the device to perform complex real-world tasks in a human-like manner. However, their close integration with personal devices raises significant security concerns, with many threats, including backdoor attacks, remaining largely unexplored. This work reveals that the visual grounding of GUI agent-mapping textual plans to GUI elements-can introduce vulnerabilities, enabling new types of backdoor attacks. With backdoor attack targeting visual grounding, the agent's behavior can be compromised even when given correct task-solving plans. To validate this vulnerability, we propose VisualTrap, a method that can hijack the grounding by misleading the agent to locate textual plans to trigger locations instead of the intended targets. VisualTrap uses the common method of injecting poisoned data for attacks, and does so during the pre-training of visual grounding to ensure practical feasibility of attacking. Empirical results show that VisualTrap can effectively hijack visual grounding with as little as 5% poisoned data and highly stealthy visual triggers (invisible to the human eye); and the attack can be generalized to downstream tasks, even after clean fine-tuning. Moreover, the injected trigger can remain effective across different GUI environments, e.g., being trained on mobile/web and generalizing to desktop environments. These findings underscore the urgent need for further research on backdoor attack risks in GUI agents.
Abstract:Diffusion models, known for their generative ability to simulate data creation through noise-adding and denoising processes, have emerged as a promising approach for building generative recommenders. To incorporate user history for personalization, existing methods typically adopt a conditional diffusion framework, where the reverse denoising process of reconstructing items from noise is modified to be conditioned on the user history. However, this design may fail to fully utilize historical information, as it gets distracted by the need to model the "item $\leftrightarrow$ noise" translation. This motivates us to reformulate the diffusion process for sequential recommendation in an unconditional manner, treating user history (instead of noise) as the endpoint of the forward diffusion process (i.e., the starting point of the reverse process), rather than as a conditional input. This formulation allows for exclusive focus on modeling the "item $\leftrightarrow$ history" translation. To this end, we introduce Brownian Bridge Diffusion Recommendation (BBDRec). By leveraging a Brownian bridge process, BBDRec enforces a structured noise addition and denoising mechanism, ensuring that the trajectories are constrained towards a specific endpoint -- user history, rather than noise. Extensive experiments demonstrate BBDRec's effectiveness in enhancing sequential recommendation performance. The source code is available at https://github.com/baiyimeng/BBDRec.
Abstract:Recent advancements in large reasoning models (LRMs) have significantly enhanced language models' capabilities in complex problem-solving by emulating human-like deliberative thinking. However, these models often exhibit overthinking (i.e., the generation of unnecessarily verbose and redundant content), which hinders efficiency and inflates inference cost. In this work, we explore the representational and behavioral origins of this inefficiency, revealing that LRMs inherently possess the capacity for more concise reasoning. Empirical analyses show that correct reasoning paths vary significantly in length, and the shortest correct responses often suffice, indicating untapped efficiency potential. Exploiting these findings, we propose two lightweight methods to enhance LRM efficiency. First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction in the model's representation space. Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity by rewarding concise correct solutions. Extensive experiments on seven LRM backbones across multiple mathematical reasoning benchmarks demonstrate that our methods significantly reduce reasoning length while preserving or improving task performance. Our results highlight that reasoning efficiency can be improved by leveraging and guiding the intrinsic capabilities of existing models in a self-guided manner.
Abstract:Spectral Graph Neural Networks (SGNNs) have attracted significant attention due to their ability to approximate arbitrary filters. They typically rely on supervision from downstream tasks to adaptively learn appropriate filters. However, under label-scarce conditions, SGNNs may learn suboptimal filters, leading to degraded performance. Meanwhile, the remarkable success of Large Language Models (LLMs) has inspired growing interest in exploring their potential within the GNN domain. This naturally raises an important question: \textit{Can LLMs help overcome the limitations of SGNNs and enhance their performance?} In this paper, we propose a novel approach that leverages LLMs to estimate the homophily of a given graph. The estimated homophily is then used to adaptively guide the design of polynomial spectral filters, thereby improving the expressiveness and adaptability of SGNNs across diverse graph structures. Specifically, we introduce a lightweight pipeline in which the LLM generates homophily-aware priors, which are injected into the filter coefficients to better align with the underlying graph topology. Extensive experiments on benchmark datasets demonstrate that our LLM-driven SGNN framework consistently outperforms existing baselines under both homophilic and heterophilic settings, with minimal computational and monetary overhead.




Abstract:The development of large language models (LLMs) has entered in a experience-driven era, flagged by the emergence of environment feedback-driven learning via reinforcement learning and tool-using agents. This encourages the emergenece of model context protocol (MCP), which defines the standard on how should a LLM interact with external services, such as \api and data. However, as MCP becomes the de facto standard for LLM agent systems, it also introduces new safety risks. In particular, MCP introduces third-party services, which are not controlled by the LLM developers, into the agent systems. These third-party MCP services provider are potentially malicious and have the economic incentives to exploit vulnerabilities and sabotage user-agent interactions. In this position paper, we advocate the research community in LLM safety to pay close attention to the new safety risks issues introduced by MCP, and develop new techniques to build safe MCP-powered agent systems. To establish our position, we argue with three key parts. (1) We first construct \framework, a controlled framework to examine safety issues in MCP-powered agent systems. (2) We then conduct a series of pilot experiments to demonstrate the safety risks in MCP-powered agent systems is a real threat and its defense is not trivial. (3) Finally, we give our outlook by showing a roadmap to build safe MCP-powered agent systems. In particular, we would call for researchers to persue the following research directions: red teaming, MCP safe LLM development, MCP safety evaluation, MCP safety data accumulation, MCP service safeguard, and MCP safe ecosystem construction. We hope this position paper can raise the awareness of the research community in MCP safety and encourage more researchers to join this important research direction. Our code is available at https://github.com/littlelittlenine/SafeMCP.git.