Abstract:Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
Abstract:Safety risks of AI models have been widely studied at deployment time, such as jailbreak attacks that elicit harmful outputs. In contrast, safety risks emerging during training remain largely unexplored. Beyond explicit reward hacking that directly manipulates explicit reward functions in reinforcement learning, we study implicit training-time safety risks: harmful behaviors driven by a model's internal incentives and contextual background information. For example, during code-based reinforcement learning, a model may covertly manipulate logged accuracy for self-preservation. We present the first systematic study of this problem, introducing a taxonomy with five risk levels, ten fine-grained risk categories, and three incentive types. Extensive experiments reveal the prevalence and severity of these risks: notably, Llama-3.1-8B-Instruct exhibits risky behaviors in 74.4% of training runs when provided only with background information. We further analyze factors influencing these behaviors and demonstrate that implicit training-time risks also arise in multi-agent training settings. Our results identify an overlooked yet urgent safety challenge in training.
Abstract:The integration of reinforcement learning (RL) into large language models (LLMs) has opened new opportunities for recommender systems by eliciting reasoning and improving user preference modeling. However, RL-based LLM recommendation faces significant efficiency challenges, making full-data training costly. Existing data selection methods define sample value based on learnability or representativeness, yet their loss- or gradient-driven or dataset coverage-driven criteria often misalign with RL learning dynamics, resulting in suboptimal performance. To address this, we propose MiniRec, a data selection framework tailored for RL-based LLM recommendation. MiniRec evaluates sample learnability using key RL signals -- rewards -- pruning samples that are too easy (too high reward) or too difficult (consistently low reward). It assesses representativeness by aligning sample gradients with the approximated "ideal" global RL optimization trajectory, selecting samples that mainly drive model updates, and it also enforces diversity to reduce redundancy. Combined with a curriculum learning strategy from easy to hard samples, MiniRec significantly reduces training cost while largely preserving performance. Extensive experiments demonstrate MiniRec's effectiveness, highlighting the importance of reward-aligned, trajectory-informed data selection in RL-based LLM recommendation.
Abstract:Large Language Models (LLMs) are increasingly deployed as agents that operate in real-world environments, introducing safety risks beyond linguistic harm. Existing agent safety evaluations rely on risk-oriented tasks tailored to specific agent settings, resulting in limited coverage of safety risk space and failing to assess agent safety behavior during long-horizon, interactive task execution in complex real-world deployments. Moreover, their specialization to particular agent settings limits adaptability across diverse agent configurations. To address these limitations, we propose Risky-Bench, a framework that enables systematic agent safety evaluation grounded in real-world deployment. Risky-Bench organizes evaluation around domain-agnostic safety principles to derive context-aware safety rubrics that delineate safety space, and systematically evaluates safety risks across this space through realistic task execution under varying threat assumptions. When applied to life-assist agent settings, Risky-Bench uncovers substantial safety risks in state-of-the-art agents under realistic execution conditions. Moreover, as a well-structured evaluation pipeline, Risky-Bench is not confined to life-assist scenarios and can be adapted to other deployment settings to construct environment-specific safety evaluations, providing an extensible methodology for agent safety assessment.
Abstract:Generative Recommendation (GR) has become a promising end-to-end approach with high FLOPS utilization for resource-efficient recommendation. Despite the effectiveness, we show that current GR models suffer from a critical \textbf{bias amplification} issue, where token-level bias escalates as token generation progresses, ultimately limiting the recommendation diversity and hurting the user experience. By comparing against the key factor behind the success of traditional multi-stage pipelines, we reveal two limitations in GR that can amplify the bias: homogeneous reliance on the encoded history, and fixed computational budgets that prevent deeper user preference understanding. To combat the bias amplification issue, it is crucial for GR to 1) incorporate more heterogeneous information, and 2) allocate greater computational resources at each token generation step. To this end, we propose CARE, a simple yet effective cascaded reasoning framework for debiased GR. To incorporate heterogeneous information, we introduce a progressive history encoding mechanism, which progressively incorporates increasingly fine-grained history information as the generation process advances. To allocate more computations, we propose a query-anchored reasoning mechanism, which seeks to perform a deeper understanding of historical information through parallel reasoning steps. We instantiate CARE on three GR backbones. Empirical results on four datasets show the superiority of CARE in recommendation accuracy, diversity, efficiency, and promising scalability. The codes and datasets are available at https://github.com/Linxyhaha/CARE.
Abstract:Composed Image Retrieval (CIR) aims to retrieve target images based on a hybrid query comprising a reference image and a modification text. Early dual-tower Vision-Language Models (VLMs) struggle with cross-modality compositional reasoning required for this task. Recently, adapting generative Multimodal Large Language Models (MLLMs) for retrieval offers a promising direction. However, we identify that this adaptation strategy overlooks a fundamental issue: adapting a generative MLLM into a single-embedding discriminative retriever triggers a paradigm conflict, which leads to Capability Degradation - the deterioration of native fine-grained reasoning after retrieval adaptation. To address this challenge, we propose ReCALL (Recalibrating Capability Degradation), a model-agnostic framework that follows a diagnose-generate-refine pipeline: Firstly, we diagnose cognitive blind spots of the retriever via self-guided informative instance mining. Next, we generate corrective instructions and triplets by CoT prompting the foundation MLLM and conduct quality control with VQA-based consistency filtering. Finally, we refine the retriever through continual training on these triplets with a grouped contrastive scheme, thereby internalizing fine-grained visual-semantic distinctions and realigning the discriminative embedding space of retriever with intrinsic compositional reasoning within the MLLM. Extensive experiments on CIRR and FashionIQ show that ReCALL consistently recalibrates degraded capabilities and achieves state-of-the-art performance. Code will be released soon.
Abstract:Multilingual safety remains significantly imbalanced, leaving non-high-resource (NHR) languages vulnerable compared to robust high-resource (HR) ones. Moreover, the neural mechanisms driving safety alignment remain unclear despite observed cross-lingual representation transfer. In this paper, we find that LLMs contain a set of cross-lingual shared safety neurons (SS-Neurons), a remarkably small yet critical neuronal subset that jointly regulates safety behavior across languages. We first identify monolingual safety neurons (MS-Neurons) and validate their causal role in safety refusal behavior through targeted activation and suppression. Our cross-lingual analyses then identify SS-Neurons as the subset of MS-Neurons shared between HR and NHR languages, serving as a bridge to transfer safety capabilities from HR to NHR domains. We observe that suppressing these neurons causes concurrent safety drops across NHR languages, whereas reinforcing them improves cross-lingual defensive consistency. Building on these insights, we propose a simple neuron-oriented training strategy that targets SS-Neurons based on language resource distribution and model architecture. Experiments demonstrate that fine-tuning this tiny neuronal subset outperforms state-of-the-art methods, significantly enhancing NHR safety while maintaining the model's general capabilities. The code and dataset will be available athttps://github.com/1518630367/SS-Neuron-Expansion.
Abstract:The emergence of Large Reasoning Models (LRMs) introduces a new paradigm of explicit reasoning, enabling remarkable advances yet posing unique risks such as reasoning manipulation and information leakage. To mitigate these risks, current alignment strategies predominantly rely on heavy post-training paradigms or external interventions. However, these approaches are often computationally intensive and fail to address the inherent awareness-compliance gap, a critical misalignment where models recognize potential risks yet prioritize following user instructions due to their sycophantic tendencies. To address these limitations, we propose Self-Guard, a lightweight safety defense framework that reinforces safety compliance at the representational level. Self-Guard operates through two principal stages: (1) safety-oriented prompting, which activates the model's latent safety awareness to evoke spontaneous reflection, and (2) safety activation steering, which extracts the resulting directional shift in the hidden state space and amplifies it to ensure that safety compliance prevails over sycophancy during inference. Experiments demonstrate that Self-Guard effectively bridges the awareness-compliance gap, achieving robust safety performance without compromising model utility. Furthermore, Self-Guard exhibits strong generalization across diverse unseen risks and varying model scales, offering a cost-efficient solution for LRM safety alignment.
Abstract:Robust safety of vision-language large models (VLLMs) under joint multilingual and multimodal inputs remains underexplored. Existing benchmarks are typically multilingual but text-only, or multimodal but monolingual. Recent multilingual multimodal red-teaming efforts render harmful prompts into images, yet rely heavily on typography-style visuals and lack semantically grounded image-text pairs, limiting coverage of realistic cross-modal interactions. We introduce Lingua-SafetyBench, a benchmark of 100,440 harmful image-text pairs across 10 languages, explicitly partitioned into image-dominant and text-dominant subsets to disentangle risk sources. Evaluating 11 open-source VLLMs reveals a consistent asymmetry: image-dominant risks yield higher ASR in high-resource languages, while text-dominant risks are more severe in non-high-resource languages. A controlled study on the Qwen series shows that scaling and version upgrades reduce Attack Success Rate (ASR) overall but disproportionately benefit HRLs, widening the gap between HRLs and Non-HRLs under text-dominant risks. This underscores the necessity of language- and modality-aware safety alignment beyond mere scaling.To facilitate reproducibility and future research, we will publicly release our benchmark, model checkpoints, and source code.The code and dataset will be available at https://github.com/zsxr15/Lingua-SafetyBench.Warning: this paper contains examples with unsafe content.
Abstract:As generative AI achieves hyper-realism, superficial artifact detection has become obsolete. While prevailing methods rely on resource-intensive fine-tuning of black-box backbones, we propose that forgery detection capability is already encoded within pre-trained models rather than requiring end-to-end retraining. To elicit this intrinsic capability, we propose the discriminative neural anchors (DNA) framework, which employs a coarse-to-fine excavation mechanism. First, by analyzing feature decoupling and attention distribution shifts, we pinpoint critical intermediate layers where the focus of the model logically transitions from global semantics to local anomalies. Subsequently, we introduce a triadic fusion scoring metric paired with a curvature-truncation strategy to strip away semantic redundancy, precisely isolating the forgery-discriminative units (FDUs) inherently imprinted with sensitivity to forgery traces. Moreover, we introduce HIFI-Gen, a high-fidelity synthetic benchmark built upon the very latest models, to address the lag in existing datasets. Experiments demonstrate that by solely relying on these anchors, DNA achieves superior detection performance even under few-shot conditions. Furthermore, it exhibits remarkable robustness across diverse architectures and against unseen generative models, validating that waking up latent neurons is more effective than extensive fine-tuning.