University of Science and Technology of China
Abstract:Recent advancements in recommender systems have focused on leveraging Large Language Models (LLMs) to improve user preference modeling, yielding promising outcomes. However, current LLM-based approaches struggle to fully leverage user behavior sequences, resulting in suboptimal preference modeling for personalized recommendations. In this study, we propose a novel Counterfactual Fine-Tuning (CFT) method to address this issue by explicitly emphasizing the role of behavior sequences when generating recommendations. Specifically, we employ counterfactual reasoning to identify the causal effects of behavior sequences on model output and introduce a task that directly fits the ground-truth labels based on these effects, achieving the goal of explicit emphasis. Additionally, we develop a token-level weighting mechanism to adjust the emphasis strength for different item tokens, reflecting the diminishing influence of behavior sequences from earlier to later tokens during predicting an item. Extensive experiments on real-world datasets demonstrate that CFT effectively improves behavior sequence modeling. Our codes are available at https://github.com/itsmeyjt/CFT.
Abstract:Recommender systems require the simultaneous optimization of multiple objectives to accurately model user interests, necessitating the application of multi-task learning methods. However, existing multi-task learning methods in recommendations overlook the specific characteristics of recommendation scenarios, falling short in achieving proper gradient balance. To address this challenge, we set the target of multi-task learning as attaining the appropriate magnitude balance and the global direction balance, and propose an innovative methodology named GradCraft in response. GradCraft dynamically adjusts gradient magnitudes to align with the maximum gradient norm, mitigating interference from gradient magnitudes for subsequent manipulation. It then employs projections to eliminate gradient conflicts in directions while considering all conflicting tasks simultaneously, theoretically guaranteeing the global resolution of direction conflicts. GradCraft ensures the concurrent achievement of appropriate magnitude balance and global direction balance, aligning with the inherent characteristics of recommendation scenarios. Both offline and online experiments attest to the efficacy of GradCraft in enhancing multi-task performance in recommendations. The source code for GradCraft can be accessed at https://github.com/baiyimeng/GradCraft.
Abstract:Short video recommendations often face limitations due to the quality of user feedback, which may not accurately depict user interests. To tackle this challenge, a new task has emerged: generating more dependable labels from original feedback. Existing label generation methods rely on manual rules, demanding substantial human effort and potentially misaligning with the desired objectives of the platform. To transcend these constraints, we introduce LabelCraft, a novel automated label generation method explicitly optimizing pivotal operational metrics for platform success. By formulating label generation as a higher-level optimization problem above recommender model optimization, LabelCraft introduces a trainable labeling model for automatic label mechanism modeling. Through meta-learning techniques, LabelCraft effectively addresses the bi-level optimization hurdle posed by the recommender and labeling models, enabling the automatic acquisition of intricate label generation mechanisms.Extensive experiments on real-world datasets corroborate LabelCraft's excellence across varied operational metrics, encompassing usage time, user engagement, and retention. Codes are available at https://github.com/baiyimeng/LabelCraft.
Abstract:Recommendation unlearning is an emerging task to serve users for erasing unusable data (e.g., some historical behaviors) from a well-trained recommender model. Existing methods process unlearning requests by fully or partially retraining the model after removing the unusable data. However, these methods are impractical due to the high computation cost of full retraining and the highly possible performance damage of partial training. In this light, a desired recommendation unlearning method should obtain a similar model as full retraining in a more efficient manner, i.e., achieving complete, efficient and innocuous unlearning. In this work, we propose an Influence Function-based Recommendation Unlearning (IFRU) framework, which efficiently updates the model without retraining by estimating the influence of the unusable data on the model via the influence function. In the light that recent recommender models use historical data for both the constructions of the optimization loss and the computational graph (e.g., neighborhood aggregation), IFRU jointly estimates the direct influence of unusable data on optimization loss and the spillover influence on the computational graph to pursue complete unlearning. Furthermore, we propose an importance-based pruning algorithm to reduce the cost of the influence function. IFRU is innocuous and applicable to mainstream differentiable models. Extensive experiments demonstrate that IFRU achieves more than250times acceleration compared to retraining-based methods with recommendation performance comparable to full retraining.
Abstract:With the proliferation of short video applications, the significance of short video recommendations has vastly increased. Unlike other recommendation scenarios, short video recommendation systems heavily rely on feedback from watch time. Existing approaches simply treat watch time as a direct label, failing to effectively harness its extensive semantics and introduce bias, thereby limiting the potential for modeling user interests based on watch time. To overcome this challenge, we propose a framework named Debiasied Multiple-semantics-extracting Labeling (DML). DML constructs labels that encompass various semantics by utilizing quantiles derived from the distribution of watch time, prioritizing relative order rather than absolute label values. This approach facilitates easier model learning while aligning with the ranking objective of recommendations. Furthermore, we introduce a method inspired by causal adjustment to refine label definitions, thereby reducing the impact of bias on the label and directly mitigating bias at the label level. We substantiate the effectiveness of our DML framework through both online and offline experiments. Extensive results demonstrate that our DML could effectively leverage watch time to discover users' real interests, enhancing their engagement in our application.