Abstract:Recently, there has been a growing interest in leveraging Large Language Models (LLMs) for recommendation systems, which usually adapt a pre-trained LLM to the recommendation scenario through supervised fine-tuning (SFT). However, both the pre-training and SFT stages fail to explicitly model the comparative relationships of a user's preferences on different items. To construct a "helpful and harmless" LLM-based recommender, we propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO), which better aligns with customized human values during the post-training stage. Specifically, in addition to the input and chosen response that naturally align with SFT data, we design a rejected sampling strategy tailored for enhancing helpfulness, along with two strategies aimed at mitigating biases to promote harmlessness. To ensure robustness against uncertain labels present in automatically constructed preference data, we introduce a personalized smoothing factor predicted by a preference oracle into the optimization objective. Evaluation on three real-world datasets demonstrates the effectiveness of our method, showcasing not only improved recommendation performance but also mitigation of semantic hallucination and popularity bias.
Abstract:Aligning large language models (LLMs) with human values and intentions is crucial for their utility, honesty, and safety. Reinforcement learning from human feedback (RLHF) is a popular approach to achieve this alignment, but it faces challenges in computational efficiency and training stability. Recent methods like Direct Preference Optimization (DPO) and Simple Preference Optimization (SimPO) have proposed offline alternatives to RLHF, simplifying the process by reparameterizing the reward function. However, DPO depends on a potentially suboptimal reference model, and SimPO's assumption of a fixed target reward margin may lead to suboptimal decisions in diverse data settings. In this work, we propose $\alpha$-DPO, an adaptive preference optimization algorithm designed to address these limitations by introducing a dynamic reward margin. Specifically, $\alpha$-DPO employs an adaptive preference distribution, balancing the policy model and the reference model to achieve personalized reward margins. We provide theoretical guarantees for $\alpha$-DPO, demonstrating its effectiveness as a surrogate optimization objective and its ability to balance alignment and diversity through KL divergence control. Empirical evaluations on AlpacaEval 2 and Arena-Hard show that $\alpha$-DPO consistently outperforms DPO and SimPO across various model settings, establishing it as a robust approach for fine-tuning LLMs. Our method achieves significant improvements in win rates, highlighting its potential as a powerful tool for LLM alignment. The code is available at https://github.com/junkangwu/alpha-DPO
Abstract:The de novo generation of molecules with targeted properties is crucial in biology, chemistry, and drug discovery. Current generative models are limited to using single property values as conditions, struggling with complex customizations described in detailed human language. To address this, we propose the text guidance instead, and introduce TextSMOG, a new Text-guided Small Molecule Generation Approach via 3D Diffusion Model which integrates language and diffusion models for text-guided small molecule generation. This method uses textual conditions to guide molecule generation, enhancing both stability and diversity. Experimental results show TextSMOG's proficiency in capturing and utilizing information from textual descriptions, making it a powerful tool for generating 3D molecular structures in response to complex textual customizations.
Abstract:Sequential recommendation systems predict a user's next item of interest by analyzing past interactions, aligning recommendations with individual preferences. Leveraging the strengths of Large Language Models (LLMs) in knowledge comprehension and reasoning, recent approaches have applied LLMs to sequential recommendation through language generation paradigms. These methods convert user behavior sequences into prompts for LLM fine-tuning, utilizing Low-Rank Adaptation (LoRA) modules to refine recommendations. However, the uniform application of LoRA across diverse user behaviors sometimes fails to capture individual variability, leading to suboptimal performance and negative transfer between disparate sequences. To address these challenges, we propose Instance-wise LoRA (iLoRA), integrating LoRA with the Mixture of Experts (MoE) framework. iLoRA creates a diverse array of experts, each capturing specific aspects of user preferences, and introduces a sequence representation guided gate function. This gate function processes historical interaction sequences to generate enriched representations, guiding the gating network to output customized expert participation weights. This tailored approach mitigates negative transfer and dynamically adjusts to diverse behavior patterns. Extensive experiments on three benchmark datasets demonstrate the effectiveness of iLoRA, highlighting its superior performance compared to existing methods in capturing user-specific preferences and improving recommendation accuracy.
Abstract:Graph out-of-distribution (OOD) generalization remains a major challenge in graph learning since graph neural networks (GNNs) often suffer from severe performance degradation under distribution shifts. Invariant learning, aiming to extract invariant features across varied distributions, has recently emerged as a promising approach for OOD generation. Despite the great success of invariant learning in OOD problems for Euclidean data (i.e., images), the exploration within graph data remains constrained by the complex nature of graphs. Existing studies, such as data augmentation or causal intervention, either suffer from disruptions to invariance during the graph manipulation process or face reliability issues due to a lack of supervised signals for causal parts. In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL), to extract the invariant features of graphs and enhance models' generalization ability to unseen distributions. Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors. Cooperating with our designed multi-level contrastive learning, we maximize the mutual information among graphs of the same class in the downstream classification tasks, preserving invariant features for prediction to a great extent. An appealing feature of InfoIGL is its strong generalization ability without depending on supervised signal of invariance. Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization for graph classification tasks. The source code is available at https://github.com/maowenyu-11/InfoIGL.
Abstract:We introduce a novel self-supervised deep clustering approach tailored for unstructured data without requiring prior knowledge of the number of clusters, termed Adaptive Self-supervised Robust Clustering (ASRC). In particular, ASRC adaptively learns the graph structure and edge weights to capture both local and global structural information. The obtained graph enables us to learn clustering-friendly feature representations by an enhanced graph auto-encoder with contrastive learning technique. It further leverages the clustering results adaptively obtained by robust continuous clustering (RCC) to generate prototypes for negative sampling, which can further contribute to promoting consistency among positive pairs and enlarging the gap between positive and negative samples. ASRC obtains the final clustering results by applying RCC to the learned feature representations with their consistent graph structure and edge weights. Extensive experiments conducted on seven benchmark datasets demonstrate the efficacy of ASRC, demonstrating its superior performance over other popular clustering models. Notably, ASRC even outperforms methods that rely on prior knowledge of the number of clusters, highlighting its effectiveness in addressing the challenges of clustering unstructured data.
Abstract:Designing effective prompts can empower LLMs to understand user preferences and provide recommendations by leveraging LLMs' intent comprehension and knowledge utilization capabilities. However, existing research predominantly concentrates on task-wise prompting, developing fixed prompt templates composed of four patterns (i.e., role-playing, history records, reasoning guidance, and output format) and applying them to all users for a given task. Although convenient, task-wise prompting overlooks individual user differences, leading to potential mismatches in capturing user preferences. To address it, we introduce the concept of instance-wise prompting to personalize discrete prompts for individual users and propose Reinforced Prompt Personalization (RPP) to optimize the four patterns in prompts using multi-agent reinforcement learning (MARL). To boost efficiency, RPP formulates prompt personalization as selecting optimal sentences holistically across the four patterns, rather than optimizing word-by-word. To ensure the quality of prompts, RPP meticulously crafts diverse expressions for each of the four patterns, considering multiple analytical perspectives for specific recommendation tasks. In addition to RPP, our proposal of RPP+ aims to enhance the scalability of action space by dynamically refining actions with LLMs throughout the iterative process. We evaluate the effectiveness of RPP/RPP+ in ranking tasks over various datasets. Experimental results demonstrate the superiority of RPP/RPP+ over traditional recommender models, few-shot methods, and other prompt-based methods, underscoring the significance of instance-wise prompting for LLMs in recommendation tasks and validating the effectiveness of RPP/RPP+. Our code is available at https://github.com/maowenyu-11/RPP.
Abstract:Direct Preference Optimization (DPO) has emerged as a compelling approach for training Large Language Models (LLMs) to adhere to human preferences. However, the performance of DPO is sensitive to the fine-tuning of its trade-off parameter $\beta$, as well as to the quality of the preference data. We analyze the impact of $\beta$ and data quality on DPO, uncovering that optimal $\beta$ values vary with the informativeness of pairwise data. Addressing the limitations of static $\beta$ values, we introduce a novel framework that dynamically calibrates $\beta$ at the batch level, informed by data quality considerations. Additionally, our method incorporates $\beta$-guided data filtering to safeguard against the influence of outliers. Through empirical evaluation, we demonstrate that our dynamic $\beta$ adjustment technique significantly improves DPO's performance across a range of models and datasets, offering a more robust and adaptable training paradigm for aligning LLMs with human feedback. The code is available at \url{https://github.com/junkangwu/beta-DPO}.
Abstract:This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
Abstract:Conventional recommender systems (RSs) face challenges in precisely capturing users' fine-grained preferences. Large language models (LLMs) have shown capabilities in commonsense reasoning and leveraging external tools that may help address these challenges. However, existing LLM-based RSs suffer from hallucinations, misalignment between the semantic space of items and the behavior space of users, or overly simplistic control strategies (e.g., whether to rank or directly present existing results). To bridge these gap, we introduce ToolRec, a framework for LLM-empowered recommendations via tool learning that uses LLMs as surrogate users, thereby guiding the recommendation process and invoking external tools to generate a recommendation list that aligns closely with users' nuanced preferences. We formulate the recommendation process as a process aimed at exploring user interests in attribute granularity. The process factors in the nuances of the context and user preferences. The LLM then invokes external tools based on a user's attribute instructions and probes different segments of the item pool. We consider two types of attribute-oriented tools: rank tools and retrieval tools. Through the integration of LLMs, ToolRec enables conventional recommender systems to become external tools with a natural language interface. Extensive experiments verify the effectiveness of ToolRec, particularly in scenarios that are rich in semantic content.