Abstract:Graph out-of-distribution (OOD) generalization remains a major challenge in graph learning since graph neural networks (GNNs) often suffer from severe performance degradation under distribution shifts. Invariant learning, aiming to extract invariant features across varied distributions, has recently emerged as a promising approach for OOD generation. Despite the great success of invariant learning in OOD problems for Euclidean data (i.e., images), the exploration within graph data remains constrained by the complex nature of graphs. Existing studies, such as data augmentation or causal intervention, either suffer from disruptions to invariance during the graph manipulation process or face reliability issues due to a lack of supervised signals for causal parts. In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL), to extract the invariant features of graphs and enhance models' generalization ability to unseen distributions. Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors. Cooperating with our designed multi-level contrastive learning, we maximize the mutual information among graphs of the same class in the downstream classification tasks, preserving invariant features for prediction to a great extent. An appealing feature of InfoIGL is its strong generalization ability without depending on supervised signal of invariance. Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization for graph classification tasks. The source code is available at https://github.com/maowenyu-11/InfoIGL.
Abstract:Designing effective prompts can empower LLMs to understand user preferences and provide recommendations by leveraging LLMs' intent comprehension and knowledge utilization capabilities. However, existing research predominantly concentrates on task-wise prompting, developing fixed prompt templates composed of four patterns (i.e., role-playing, history records, reasoning guidance, and output format) and applying them to all users for a given task. Although convenient, task-wise prompting overlooks individual user differences, leading to potential mismatches in capturing user preferences. To address it, we introduce the concept of instance-wise prompting to personalize discrete prompts for individual users and propose Reinforced Prompt Personalization (RPP) to optimize the four patterns in prompts using multi-agent reinforcement learning (MARL). To boost efficiency, RPP formulates prompt personalization as selecting optimal sentences holistically across the four patterns, rather than optimizing word-by-word. To ensure the quality of prompts, RPP meticulously crafts diverse expressions for each of the four patterns, considering multiple analytical perspectives for specific recommendation tasks. In addition to RPP, our proposal of RPP+ aims to enhance the scalability of action space by dynamically refining actions with LLMs throughout the iterative process. We evaluate the effectiveness of RPP/RPP+ in ranking tasks over various datasets. Experimental results demonstrate the superiority of RPP/RPP+ over traditional recommender models, few-shot methods, and other prompt-based methods, underscoring the significance of instance-wise prompting for LLMs in recommendation tasks and validating the effectiveness of RPP/RPP+. Our code is available at https://github.com/maowenyu-11/RPP.
Abstract:Noise suppression and echo cancellation are critical in speech enhancement and essential for smart devices and real-time communication. Deployed in voice processing front-ends and edge devices, these algorithms must ensure efficient real-time inference with low computational demands. Traditional edge-based noise suppression often uses MSE-based amplitude spectrum mask training, but this approach has limitations. We introduce a novel projection loss function, diverging from MSE, to enhance noise suppression. This method uses projection techniques to isolate key audio components from noise, significantly improving model performance. For echo cancellation, the function enables direct predictions on LAEC pre-processed outputs, substantially enhancing performance. Our noise suppression model achieves near state-of-the-art results with only 3.1M parameters and 0.4GFlops/s computational load. Moreover, our echo cancellation model outperforms replicated industry-leading models, introducing a new perspective in speech enhancement.
Abstract:Data-free quantization aims to achieve model quantization without accessing any authentic sample. It is significant in an application-oriented context involving data privacy. Converting noise vectors into synthetic samples through a generator is a popular data-free quantization method, which is called generative data-free quantization. However, there is a difference in attention between synthetic samples and authentic samples. This is always ignored and restricts the quantization performance. First, since synthetic samples of the same class are prone to have homogenous attention, the quantized network can only learn limited modes of attention. Second, synthetic samples in eval mode and training mode exhibit different attention. Hence, the batch-normalization statistics matching tends to be inaccurate. ACQ is proposed in this paper to fix the attention of synthetic samples. An attention center position-condition generator is established regarding the homogenization of intra-class attention. Restricted by the attention center matching loss, the attention center position is treated as the generator's condition input to guide synthetic samples in obtaining diverse attention. Moreover, we design adversarial loss of paired synthetic samples under the same condition to prevent the generator from paying overmuch attention to the condition, which may result in mode collapse. To improve the attention similarity of synthetic samples in different network modes, we introduce a consistency penalty to guarantee accurate BN statistics matching. The experimental results demonstrate that ACQ effectively improves the attention problems of synthetic samples. Under various training settings, ACQ achieves the best quantization performance. For the 4-bit quantization of Resnet18 and Resnet50, ACQ reaches 67.55% and 72.23% accuracy, respectively.