Junbo
Abstract:Vision-language models (VLMs) have achieved remarkable success in scene understanding and perception tasks, enabling robots to plan and execute actions adaptively in dynamic environments. However, most multimodal large language models lack robust 3D scene localization capabilities, limiting their effectiveness in fine-grained robotic operations. Additionally, challenges such as low recognition accuracy, inefficiency, poor transferability, and reliability hinder their use in precision tasks. To address these limitations, we propose a novel framework that integrates a 2D prompt synthesis module by mapping 2D images to point clouds, and incorporates a small language model (SLM) for supervising VLM outputs. The 2D prompt synthesis module enables VLMs, trained on 2D images and text, to autonomously extract precise 3D spatial information without manual intervention, significantly enhancing 3D scene understanding. Meanwhile, the SLM supervises VLM outputs, mitigating hallucinations and ensuring reliable, executable robotic control code generation. Our framework eliminates the need for retraining in new environments, thereby improving cost efficiency and operational robustness. Experimental results that the proposed framework achieved a 96.0\% Task Success Rate (TSR), outperforming other methods. Ablation studies demonstrated the critical role of both the 2D prompt synthesis module and the output supervision module (which, when removed, caused a 67\% TSR drop). These findings validate the framework's effectiveness in improving 3D recognition, task planning, and robotic task execution.
Abstract:Training LLMs on data that contains unfamiliar knowledge during the instruction tuning stage can make LLMs overconfident and encourage hallucinations. To address this challenge, we introduce a novel framework, NOVA, which identifies high-quality data that aligns well with the LLM's learned knowledge to reduce hallucinations. NOVA includes Internal Consistency Probing (ICP) and Semantic Equivalence Identification (SEI) to measure how familiar the LLM is with instruction data. Specifically, ICP evaluates the LLM's understanding of the given instruction by calculating the tailored consistency among multiple self-generated responses. SEI further assesses the familiarity of the LLM with the target response by comparing it to the generated responses, using the proposed semantic clustering and well-designed voting strategy. Finally, we introduce an expert-aligned reward model, considering characteristics beyond just familiarity to enhance data quality. By considering data quality and avoiding unfamiliar data, we can utilize the selected data to effectively align LLMs to follow instructions and hallucinate less. Extensive experiments and analysis show that NOVA significantly reduces hallucinations and allows LLMs to maintain a strong ability to follow instructions.
Abstract:Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine robustness due to a newly discovered phenomenon in this paper - gradient skew. We discover that a group of densely distributed honest gradients skew away from the optimal gradient (the average of honest gradients) due to heterogeneous data. This gradient skew phenomenon allows Byzantine gradients to hide within the densely distributed skewed gradients. As a result, Byzantine defenses are confused into believing that Byzantine gradients are honest. Motivated by this observation, we propose a novel skew-aware attack called STRIKE: first, we search for the skewed gradients; then, we construct Byzantine gradients within the skewed gradients. Experiments on three benchmark datasets validate the effectiveness of our attack
Abstract:Discovering co-movement patterns from urban-scale video data sources has emerged as an attractive topic. This task aims to identify groups of objects that travel together along a common route, which offers effective support for government agencies in enhancing smart city management. However, the previous work has made a strong assumption on the accuracy of recovered trajectories from videos and their co-movement pattern definition requires the group of objects to appear across consecutive cameras along the common route. In practice, this often leads to missing patterns if a vehicle is not correctly identified from a certain camera due to object occlusion or vehicle mis-matching. To address this challenge, we propose a relaxed definition of co-movement patterns from video data, which removes the consecutiveness requirement in the common route and accommodates a certain number of missing captured cameras for objects within the group. Moreover, a novel enumeration framework called MaxGrowth is developed to efficiently retrieve the relaxed patterns. Unlike previous filter-and-refine frameworks comprising both candidate enumeration and subsequent candidate verification procedures, MaxGrowth incurs no verification cost for the candidate patterns. It treats the co-movement pattern as an equivalent sequence of clusters, enumerating candidates with increasing sequence length while avoiding the generation of any false positives. Additionally, we also propose two effective pruning rules to efficiently filter the non-maximal patterns. Extensive experiments are conducted to validate the efficiency of MaxGrowth and the quality of its generated co-movement patterns. Our MaxGrowth runs up to two orders of magnitude faster than the baseline algorithm. It also demonstrates high accuracy in real video dataset when the trajectory recovery algorithm is not perfect.
Abstract:Event cameras are neuromorphically inspired sensors that sparsely and asynchronously report brightness changes. Their unique characteristics of high temporal resolution, high dynamic range, and low power consumption make them well-suited for addressing challenges in monocular depth estimation (e.g., high-speed or low-lighting conditions). However, current existing methods primarily treat event streams as black-box learning systems without incorporating prior physical principles, thus becoming over-parameterized and failing to fully exploit the rich temporal information inherent in event camera data. To address this limitation, we incorporate physical motion principles to propose an interpretable monocular depth estimation framework, where the likelihood of various depth hypotheses is explicitly determined by the effect of motion compensation. To achieve this, we propose a Focus Cost Discrimination (FCD) module that measures the clarity of edges as an essential indicator of focus level and integrates spatial surroundings to facilitate cost estimation. Furthermore, we analyze the noise patterns within our framework and improve it with the newly introduced Inter-Hypotheses Cost Aggregation (IHCA) module, where the cost volume is refined through cost trend prediction and multi-scale cost consistency constraints. Extensive experiments on real-world and synthetic datasets demonstrate that our proposed framework outperforms cutting-edge methods by up to 10\% in terms of the absolute relative error metric, revealing superior performance in predicting accuracy.
Abstract:Neuromorphic vision sensors, such as the dynamic vision sensor (DVS) and spike camera, have gained increasing attention in recent years. The spike camera can detect fine textures by mimicking the fovea in the human visual system, and output a high-frequency spike stream. Real-time high-quality vision reconstruction from the spike stream can build a bridge to high-level vision task applications of the spike camera. To realize high-speed and high-quality vision reconstruction of the spike camera, we propose a new spike stability theorem that reveals the relationship between spike stream characteristics and stable light intensity. Based on the spike stability theorem, two parameter-free algorithms are designed for the real-time vision reconstruction of the spike camera. To demonstrate the performances of our algorithms, two datasets (a public dataset PKU-Spike-High-Speed and a newly constructed dataset SpikeCityPCL) are used to compare the reconstruction quality and speed of various reconstruction methods. Experimental results show that, compared with the current state-of-the-art (SOTA) reconstruction methods, our reconstruction methods obtain the best tradeoff between the reconstruction quality and speed. Additionally, we design the FPGA implementation method of our algorithms to realize the real-time (running at 20,000 FPS) visual reconstruction. Our work provides new theorem and algorithm foundations for the real-time edge-end vision processing of the spike camera.
Abstract:With the rise of the ``metaverse'' and the rapid development of games, it has become more and more critical to reconstruct characters in the virtual world faithfully. The immersive experience is one of the most central themes of the ``metaverse'', while the reducibility of the avatar is the crucial point. Meanwhile, the game is the carrier of the metaverse, in which players can freely edit the facial appearance of the game character. In this paper, we propose a simple but powerful cross-domain framework that can reconstruct fine-grained 3D game characters from single-view images in an end-to-end manner. Different from the previous methods, which do not resolve the cross-domain gap, we propose an effective regressor that can greatly reduce the discrepancy between the real-world domain and the game domain. To figure out the drawbacks of no ground truth, our unsupervised framework has accomplished the knowledge transfer of the target domain. Additionally, an innovative contrastive loss is proposed to solve the instance-wise disparity, which keeps the person-specific details of the reconstructed character. In contrast, an auxiliary 3D identity-aware extractor is activated to make the results of our model more impeccable. Then a large set of physically meaningful facial parameters is generated robustly and exquisitely. Experiments demonstrate that our method yields state-of-the-art performance in 3D game character reconstruction.
Abstract:Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used throughout the DA workflow, which involves three main steps: data fabric, data exploration, and result reporting. We summarize existing versatile forms of SV used in these steps by a unified definition and clarify the essential functionalities that SV can provide for data scientists. We categorize the arts in this field based on the technical challenges they tackled, which include computation efficiency, approximation error, privacy preservation, and appropriate interpretations. We discuss these challenges and analyze the corresponding solutions. We also implement SVBench, the first open-sourced benchmark for developing SV applications, and conduct experiments on six DA tasks to validate our analysis and discussions. Based on the qualitative and quantitative results, we identify the limitations of current efforts for applying SV to DA and highlight the directions of future research and engineering.
Abstract:The Mixture of Experts (MoE) is an advanced model architecture in the industry that combines multiple specialized expert models from various domains into a single supermodel. This approach enables the model to scale without significantly increasing the computational costs of training and inference, while maximizing model performance. However, current distributed training frameworks do not consider the ultimate optimization of communication, especially for large base models. This paper proposes a network-traffic-aware parallel optimization method that selects the optimal parallel strategy based on the communication volume, and the training cluster's inter-node and intra-node network topologies. Compared to the DeepSpeed, MoNTA achieves an 8x increase in AllToAll communication performance under 8-card tensor parallelism. Compared to the baseline, training a 2x70B model using 16 A800 cards, with an 8K sequence, results in a 13% overall latency performance improvement. Project Page: https://github.com/EnflameTechnology/DeepSpeed.
Abstract:The expansion of large language models to effectively handle instructions with extremely long contexts has yet to be fully investigated. The primary obstacle lies in constructing a high-quality long instruction-following dataset devised for long context alignment. Existing studies have attempted to scale up the available data volume by synthesizing long instruction-following samples. However, indiscriminately increasing the quantity of data without a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the final performance. To bridge this gap, we aim to address the unique challenge of long-context alignment, i.e., modeling the long-range dependencies for handling instructions and lengthy input contexts. We propose GATEAU, a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations by utilizing crafted Homologous Models' Guidance (HMG) and Contextual Awareness Measurement (CAM). Specifically, HMG attempts to measure the difficulty of generating corresponding responses due to the long-range dependencies, using the perplexity scores of the response from two homologous models with different context windows. Also, the role of CAM is to measure the difficulty of understanding the long input contexts due to long-range dependencies by evaluating whether the model's attention is focused on important segments. Built upon both proposed methods, we select the most challenging samples as the influential data to effectively frame the long-range dependencies, thereby achieving better performance of LLMs. Comprehensive experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.