Abstract:In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large
Abstract:The ability of Graph Neural Networks (GNNs) to capture long-range and global topology information is limited by the scope of conventional graph Laplacian, leading to unsatisfactory performance on some datasets, particularly on heterophilic graphs. To address this limitation, we propose a new class of parameterized Laplacian matrices, which provably offers more flexibility in controlling the diffusion distance between nodes than the conventional graph Laplacian, allowing long-range information to be adaptively captured through diffusion on graph. Specifically, we first prove that the diffusion distance and spectral distance on graph have an order-preserving relationship. With this result, we demonstrate that the parameterized Laplacian can accelerate the diffusion of long-range information, and the parameters in the Laplacian enable flexibility of the diffusion scopes. Based on the theoretical results, we propose topology-guided rewiring mechanism to capture helpful long-range neighborhood information for heterophilic graphs. With this mechanism and the new Laplacian, we propose two GNNs with flexible diffusion scopes: namely the Parameterized Diffusion based Graph Convolutional Networks (PD-GCN) and Graph Attention Networks (PD-GAT). Synthetic experiments reveal the high correlations between the parameters of the new Laplacian and the performance of parameterized GNNs under various graph homophily levels, which verifies that our new proposed GNNs indeed have the ability to adjust the parameters to adaptively capture the global information for different levels of heterophilic graphs. They also outperform the state-of-the-art (SOTA) models on 6 out of 7 real-world benchmark datasets, which further confirms their superiority.
Abstract:Over the past decade, Graph Neural Networks (GNNs) have achieved great success on machine learning tasks with relational data. However, recent studies have found that heterophily can cause significant performance degradation of GNNs, especially on node-level tasks. Numerous heterophilic benchmark datasets have been put forward to validate the efficacy of heterophily-specific GNNs and various homophily metrics have been designed to help people recognize these malignant datasets. Nevertheless, there still exist multiple pitfalls that severely hinder the proper evaluation of new models and metrics. In this paper, we point out three most serious pitfalls: 1) a lack of hyperparameter tuning; 2) insufficient model evaluation on the real challenging heterophilic datasets; 3) missing quantitative evaluation benchmark for homophily metrics on synthetic graphs. To overcome these challenges, we first train and fine-tune baseline models on $27$ most widely used benchmark datasets, categorize them into three distinct groups: malignant, benign and ambiguous heterophilic datasets, and identify the real challenging subsets of tasks. To our best knowledge, we are the first to propose such taxonomy. Then, we re-evaluate $10$ heterophily-specific state-of-the-arts (SOTA) GNNs with fine-tuned hyperparameters on different groups of heterophilic datasets. Based on the model performance, we reassess their effectiveness on addressing heterophily challenge. At last, we evaluate $11$ popular homophily metrics on synthetic graphs with three different generation approaches. To compare the metrics strictly, we propose the first quantitative evaluation method based on Fr\'echet distance.
Abstract:Mixture of Experts (MoE) offers remarkable performance and computational efficiency by selectively activating subsets of model parameters. Traditionally, MoE models use homogeneous experts, each with identical capacity. However, varying complexity in input data necessitates experts with diverse capabilities, while homogeneous MoE hinders effective expert specialization and efficient parameter utilization. In this study, we propose a novel Heterogeneous Mixture of Experts (HMoE), where experts differ in size and thus possess diverse capacities. This heterogeneity allows for more specialized experts to handle varying token complexities more effectively. To address the imbalance in expert activation, we propose a novel training objective that encourages the frequent activation of smaller experts, enhancing computational efficiency and parameter utilization. Extensive experiments demonstrate that HMoE achieves lower loss with fewer activated parameters and outperforms conventional homogeneous MoE models on various pre-training evaluation benchmarks. Codes will be released upon acceptance.
Abstract:Large vision-language models (LVLMs) are markedly proficient in deriving visual representations guided by natural language. Recent explorations have utilized LVLMs to tackle zero-shot visual anomaly detection (VAD) challenges by pairing images with textual descriptions indicative of normal and abnormal conditions, referred to as anomaly prompts. However, existing approaches depend on static anomaly prompts that are prone to cross-semantic ambiguity, and prioritize global image-level representations over crucial local pixel-level image-to-text alignment that is necessary for accurate anomaly localization. In this paper, we present ALFA, a training-free approach designed to address these challenges via a unified model. We propose a run-time prompt adaptation strategy, which first generates informative anomaly prompts to leverage the capabilities of a large language model (LLM). This strategy is enhanced by a contextual scoring mechanism for per-image anomaly prompt adaptation and cross-semantic ambiguity mitigation. We further introduce a novel fine-grained aligner to fuse local pixel-level semantics for precise anomaly localization, by projecting the image-text alignment from global to local semantic spaces. Extensive evaluations on the challenging MVTec and VisA datasets confirm ALFA's effectiveness in harnessing the language potential for zero-shot VAD, achieving significant PRO improvements of 12.1% on MVTec AD and 8.9% on VisA compared to state-of-the-art zero-shot VAD approaches.
Abstract:Weakly supervised text classification (WSTC), also called zero-shot or dataless text classification, has attracted increasing attention due to its applicability in classifying a mass of texts within the dynamic and open Web environment, since it requires only a limited set of seed words (label names) for each category instead of labeled data. With the help of recently popular prompting Pre-trained Language Models (PLMs), many studies leveraged manually crafted and/or automatically identified verbalizers to estimate the likelihood of categories, but they failed to differentiate the effects of these category-indicative words, let alone capture their correlations and realize adaptive adjustments according to the unlabeled corpus. In this paper, in order to let the PLM effectively understand each category, we at first propose a novel form of rule-based knowledge using logical expressions to characterize the meanings of categories. Then, we develop a prompting PLM-based approach named RulePrompt for the WSTC task, consisting of a rule mining module and a rule-enhanced pseudo label generation module, plus a self-supervised fine-tuning module to make the PLM align with this task. Within this framework, the inaccurate pseudo labels assigned to texts and the imprecise logical rules associated with categories mutually enhance each other in an alternative manner. That establishes a self-iterative closed loop of knowledge (rule) acquisition and utilization, with seed words serving as the starting point. Extensive experiments validate the effectiveness and robustness of our approach, which markedly outperforms state-of-the-art weakly supervised methods. What is more, our approach yields interpretable category rules, proving its advantage in disambiguating easily-confused categories.
Abstract:Graph Attention Network (GAT) is one of the most popular Graph Neural Network (GNN) architecture, which employs the attention mechanism to learn edge weights and has demonstrated promising performance in various applications. However, since it only incorporates information from immediate neighborhood, it lacks the ability to capture long-range and global graph information, leading to unsatisfactory performance on some datasets, particularly on heterophilic graphs. To address this limitation, we propose the Directional Graph Attention Network (DGAT) in this paper. DGAT is able to combine the feature-based attention with the global directional information extracted from the graph topology. To this end, a new class of Laplacian matrices is proposed which can provably reduce the diffusion distance between nodes. Based on the new Laplacian, topology-guided neighbour pruning and edge adding mechanisms are proposed to remove the noisy and capture the helpful long-range neighborhood information. Besides, a global directional attention is designed to enable a topological-aware information propagation. The superiority of the proposed DGAT over the baseline GAT has also been verified through experiments on real-world benchmarks and synthetic data sets. It also outperforms the state-of-the-art (SOTA) models on 6 out of 7 real-world benchmark datasets.
Abstract:Federated learning (FL) underpins advancements in privacy-preserving distributed computing by collaboratively training neural networks without exposing clients' raw data. Current FL paradigms primarily focus on uni-modal data, while exploiting the knowledge from distributed multimodal data remains largely unexplored. Existing multimodal FL (MFL) solutions are mainly designed for statistical or modality heterogeneity from the input side, however, have yet to solve the fundamental issue,"modality imbalance", in distributed conditions, which can lead to inadequate information exploitation and heterogeneous knowledge aggregation on different modalities.In this paper, we propose a novel Cross-Modal Infiltration Federated Learning (FedCMI) framework that effectively alleviates modality imbalance and knowledge heterogeneity via knowledge transfer from the global dominant modality. To avoid the loss of information in the weak modality due to merely imitating the behavior of dominant modality, we design the two-projector module to integrate the knowledge from dominant modality while still promoting the local feature exploitation of weak modality. In addition, we introduce a class-wise temperature adaptation scheme to achieve fair performance across different classes. Extensive experiments over popular datasets are conducted and give us a gratifying confirmation of the proposed framework for fully exploring the information of each modality in MFL.
Abstract:Real-time analytics and decision-making require online anomaly detection (OAD) to handle drifts in data streams efficiently and effectively. Unfortunately, existing approaches are often constrained by their limited detection capacity and slow adaptation to evolving data streams, inhibiting their efficacy and efficiency in handling concept drift, which is a major challenge in evolving data streams. In this paper, we introduce METER, a novel dynamic concept adaptation framework that introduces a new paradigm for OAD. METER addresses concept drift by first training a base detection model on historical data to capture recurring central concepts, and then learning to dynamically adapt to new concepts in data streams upon detecting concept drift. Particularly, METER employs a novel dynamic concept adaptation technique that leverages a hypernetwork to dynamically generate the parameter shift of the base detection model, providing a more effective and efficient solution than conventional retraining or fine-tuning approaches. Further, METER incorporates a lightweight drift detection controller, underpinned by evidential deep learning, to support robust and interpretable concept drift detection. We conduct an extensive experimental evaluation, and the results show that METER significantly outperforms existing OAD approaches in various application scenarios.
Abstract:Filtering based on Singular Value Decomposition (SVD) provides substantial separation of clutter, flow and noise in high frame rate ultrasound flow imaging. The use of SVD as a clutter filter has greatly improved techniques such as vector flow imaging, functional ultrasound and super-resolution ultrasound localization microscopy. The removal of clutter and noise relies on the assumption that tissue, flow and noise are each represented by different subsets of singular values, so that their signals are uncorrelated and lay on orthogonal sub-spaces. This assumption fails in the presence of tissue motion, for near-wall or microvascular flow, and can be influenced by an incorrect choice of singular value thresholds. Consequently, separation of flow, clutter and noise is imperfect, which can lead to image artefacts not present in the original data. Temporal and spatial fluctuation in intensity are the commonest artefacts, which vary in appearance and strengths. Ghosting and splitting artefacts are observed in the microvasculature where the flow signal is sparsely distributed. Singular value threshold selection, tissue motion, frame rate, flow signal amplitude and acquisition length affect the prevalence of these artefacts. Understanding what causes artefacts due to SVD clutter and noise removal is necessary for their interpretation.