Abstract:Time series forecasting always faces the challenge of concept drift, where data distributions evolve over time, leading to a decline in forecast model performance. Existing solutions are based on online learning, which continually organize recent time series observations as new training samples and update model parameters according to the forecasting feedback on recent data. However, they overlook a critical issue: obtaining ground-truth future values of each sample should be delayed until after the forecast horizon. This delay creates a temporal gap between the training samples and the test sample. Our empirical analysis reveals that the gap can introduce concept drift, causing forecast models to adapt to outdated concepts. In this paper, we present \textsc{Proceed}, a novel proactive model adaptation framework for online time series forecasting. \textsc{Proceed} first operates by estimating the concept drift between the recently used training samples and the current test sample. It then employs an adaptation generator to efficiently translate the estimated drift into parameter adjustments, proactively adapting the model to the test sample. To enhance the generalization capability of the framework, \textsc{Proceed} is trained on synthetic diverse concept drifts. We conduct extensive experiments on five real-world datasets across various forecast models. The empirical study demonstrates that our proposed \textsc{Proceed} brings more performance improvements than the state-of-the-art online learning methods, significantly facilitating forecast models' resilience against concept drifts.
Abstract:Federated learning (FL) has emerged as a pivotal solution for training machine learning models over wireless networks, particularly for Internet of Things (IoT) devices with limited computation resources. Despite its benefits, the efficiency of FL is often restricted by the communication quality between IoT devices and the central server. To address this issue, we introduce an innovative approach by deploying an unmanned aerial vehicle (UAV) as a mobile FL server to enhance the training process of FL. By leveraging the UAV's maneuverability, we establish robust line-of-sight connections with IoT devices, significantly improving communication capacity. To improve the overall training efficiency, we formulate a latency minimization problem by jointly optimizing the bandwidth allocation, computing frequencies, transmit power for both the UAV and IoT devices, and the UAV's trajectory. Then, an efficient alternating optimization algorithm is developed to solve it efficiently. Furthermore, we analyze the convergence and computational complexity of the proposed algorithm. Finally, numerical results demonstrate that our proposed scheme not only outperforms existing benchmark schemes in terms of latency but also achieves training efficiency that closely approximate the ideal scenario.
Abstract:Intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) systems have shown notable improvements in efficiency, such as reduced latency, higher data rates, and better energy efficiency. However, the resource competition among users will lead to uneven allocation, increased latency, and lower throughput. Fortunately, the rate-splitting multiple access (RSMA) technique has emerged as a promising solution for managing interference and optimizing resource allocation in MEC systems. This paper studies an IRS-assisted MEC system with RSMA, aiming to jointly optimize the passive beamforming of the IRS, the active beamforming of the base station, the task offloading allocation, the transmit power of users, the ratios of public and private information allocation, and the decoding order of the RSMA to minimize the average delay from a novel uplink transmission perspective. Since the formulated problem is non-convex and the optimization variables are highly coupled, we propose a hierarchical deep reinforcement learning-based algorithm to optimize both continuous and discrete variables of the problem. Additionally, to better extract channel features, we design a novel network architecture within the policy and evaluation networks of the proposed algorithm, combining convolutional neural networks and densely connected convolutional network for feature extraction. Simulation results indicate that the proposed algorithm not only exhibits excellent convergence performance but also outperforms various benchmarks.
Abstract:Unmanned aerial vehicles (UAVs) assisted Internet of things (IoT) systems have become an important part of future wireless communications. To achieve higher communication rate, the joint design of UAV trajectory and resource allocation is crucial. This letter considers a scenario where a multi-antenna UAV is dispatched to simultaneously collect data from multiple ground IoT nodes (GNs) within a time interval. To improve the sum data collection (SDC) volume, i.e., the total data volume transmitted by the GNs, the UAV trajectory, the UAV receive beamforming, the scheduling of the GNs, and the transmit power of the GNs are jointly optimized. Since the problem is non-convex and the optimization variables are highly coupled, it is hard to solve using traditional optimization methods. To find a near-optimal solution, a double-loop structured optimization-driven deep reinforcement learning (DRL) algorithm and a fully DRL-based algorithm are proposed to solve the problem effectively. Simulation results verify that the proposed algorithms outperform two benchmarks with significant improvement in SDC volumes.
Abstract:Databases are increasingly embracing AI to provide autonomous system optimization and intelligent in-database analytics, aiming to relieve end-user burdens across various industry sectors. Nonetheless, most existing approaches fail to account for the dynamic nature of databases, which renders them ineffective for real-world applications characterized by evolving data and workloads. This paper introduces NeurDB, an AI-powered autonomous database that deepens the fusion of AI and databases with adaptability to data and workload drift. NeurDB establishes a new in-database AI ecosystem that seamlessly integrates AI workflows within the database. This integration enables efficient and effective in-database AI analytics and fast-adaptive learned system components. Empirical evaluations demonstrate that NeurDB substantially outperforms existing solutions in managing AI analytics tasks, with the proposed learned components more effectively handling environmental dynamism than state-of-the-art approaches.
Abstract:Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently. Numerical results demonstrate that the proposed algorithm can achieve lower latency than two baseline algorithms.
Abstract:This paper investigates a movable-antenna (MA) array empowered integrated sensing and communications (ISAC) over low-altitude platform (LAP) system to support low-altitude economy (LAE) applications. In the considered system, an unmanned aerial vehicle (UAV) is dispatched to hover in the air, working as the UAV-enabled LAP (ULAP) to provide information transmission and sensing simultaneously for LAE applications. To improve the throughput capacity, we formulate a data rate maximization problem by jointly optimizing the transmit information and sensing beamforming and the antenna positions of the MA array. Since the data rate maximization problem is non-convex with highly coupled variables, we propose an efficient alternation optimization based algorithm, which iteratively optimizes parts of the variables while fixing others. Numerical results show the superiority of the proposed MA array-based scheme in terms of the achievable data rate and beamforming gain compared with two benchmark schemes.
Abstract:Intelligent reflecting surface (IRS) and rate-splitting multiple access (RSMA) technologies are at the forefront of enhancing spectrum and energy efficiency in the next generation multi-antenna communication systems. This paper explores a RSMA system with multiple IRSs, and proposes two purpose-driven scheduling schemes, i.e., the exhaustive IRS-aided (EIA) and opportunistic IRS-aided (OIA) schemes. The aim is to optimize the system weighted energy efficiency (EE) under the above two schemes, respectively. Specifically, the Dinkelbach, branch and bound, successive convex approximation, and the semidefinite relaxation methods are exploited within the alternating optimization framework to obtain effective solutions to the considered problems. The numerical findings indicate that the EIA scheme exhibits better performance compared to the OIA scheme in diverse scenarios when considering the weighted EE, and the proposed algorithm demonstrates superior performance in comparison to the baseline algorithms.
Abstract:Recently, movable antenna (MA) array becomes a promising technology for improving the communication quality in wireless communication systems. In this letter, an unmanned aerial vehicle (UAV) enabled multi-user multi-input-single-output system enhanced by the MA array is investigated. To enhance the throughput capacity, we aim to maximize the achievable data rate by jointly optimizing the transmit beamforming, the UAV trajectory, and the positions of the MA array antennas. The formulated data rate maximization problem is a highly coupled non-convex problem, for which an alternating optimization based algorithm is proposed to get a sub-optimal solution. Numerical results have demonstrated the performance gain of the proposed method compared with conventional method with fixed-position antenna array.
Abstract:Emotion recognition based on Electroencephalography (EEG) has gained significant attention and diversified development in fields such as neural signal processing and affective computing. However, the unique brain anatomy of individuals leads to non-negligible natural differences in EEG signals across subjects, posing challenges for cross-subject emotion recognition. While recent studies have attempted to address these issues, they still face limitations in practical effectiveness and model framework unity. Current methods often struggle to capture the complex spatial-temporal dynamics of EEG signals and fail to effectively integrate multimodal information, resulting in suboptimal performance and limited generalizability across subjects. To overcome these limitations, we develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition that utilizes masked brain signal modeling and interlinked spatial-temporal attention mechanism. The model learns universal latent representations of EEG signals through pre-training on large scale dataset, and employs Interlinked spatial-temporal attention mechanism to process Differential Entropy(DE) features extracted from EEG data. Subsequently, a multi-level fusion layer is proposed to integrate the discriminative features, maximizing the advantages of features across different dimensions and modalities. Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks, outperforming state-of-the-art methods. Additionally, the model is dissected from attention perspective, providing qualitative analysis of emotion-related brain areas, offering valuable insights for affective research in neural signal processing.