Abstract:Specular highlight removal plays a pivotal role in multimedia applications, as it enhances the quality and interpretability of images and videos, ultimately improving the performance of downstream tasks such as content-based retrieval, object recognition, and scene understanding. Despite significant advances in deep learning-based methods, current state-of-the-art approaches often rely on additional priors or supervision, limiting their practicality and generalization capability. In this paper, we propose the Dual-Hybrid Attention Network for Specular Highlight Removal (DHAN-SHR), an end-to-end network that introduces novel hybrid attention mechanisms to effectively capture and process information across different scales and domains without relying on additional priors or supervision. DHAN-SHR consists of two key components: the Adaptive Local Hybrid-Domain Dual Attention Transformer (L-HD-DAT) and the Adaptive Global Dual Attention Transformer (G-DAT). The L-HD-DAT captures local inter-channel and inter-pixel dependencies while incorporating spectral domain features, enabling the network to effectively model the complex interactions between specular highlights and the underlying surface properties. The G-DAT models global inter-channel relationships and long-distance pixel dependencies, allowing the network to propagate contextual information across the entire image and generate more coherent and consistent highlight-free results. To evaluate the performance of DHAN-SHR and facilitate future research in this area, we compile a large-scale benchmark dataset comprising a diverse range of images with varying levels of specular highlights. Through extensive experiments, we demonstrate that DHAN-SHR outperforms 18 state-of-the-art methods both quantitatively and qualitatively, setting a new standard for specular highlight removal in multimedia applications.
Abstract:Electroencephalogram (EEG) technology, particularly high-density EEG (HD EEG) devices, is widely used in fields such as neuroscience. HD EEG devices improve the spatial resolution of EEG by placing more electrodes on the scalp, meeting the requirements of clinical diagnostic applications such as epilepsy focus localization. However, this technique faces challenges such as high acquisition costs and limited usage scenarios. In this paper, spatio-temporal adaptive diffusion models (STADMs) are proposed to pioneer the use of diffusion models for achieving spatial SR reconstruction from low-resolution (LR, 64 channels or fewer) EEG to high-resolution (HR, 256 channels) EEG. Specifically, a spatio-temporal condition module is designed to extract the spatio-temporal features of LR EEG, which then serve as conditional inputs to guide the reverse denoising process of diffusion models. Additionally, a multi-scale Transformer denoising module is constructed to leverage multi-scale convolution blocks and cross-attention-based diffusion Transformer blocks for conditional guidance to generate subject-adaptive SR EEG. Experimental results demonstrate that the proposed method effectively enhances the spatial resolution of LR EEG and quantitatively outperforms existing methods. Furthermore, STADMs demonstrate their value by applying synthetic SR EEG to classification and source localization tasks of epilepsy patients, indicating their potential to significantly improve the spatial resolution of LR EEG.
Abstract:Hybrid motor imagery brain-computer interfaces (MI-BCIs), which integrate both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals, outperform those based solely on EEG. However, simultaneously recording EEG and fNIRS signals is highly challenging due to the difficulty of colocating both types of sensors on the same scalp surface. This physical constraint complicates the acquisition of high-quality hybrid signals, thereby limiting the widespread application of hybrid MI-BCIs. To facilitate the acquisition of hybrid EEG-fNIRS signals, this study proposes the spatio-temporal controlled diffusion model (SCDM) as a framework for cross-modal generation from EEG to fNIRS. The model utilizes two core modules, the spatial cross-modal generation (SCG) module and the multi-scale temporal representation (MTR) module, which adaptively learn the respective latent temporal and spatial representations of both signals in a unified representation space. The SCG module further maps EEG representations to fNIRS representations by leveraging their spatial relationships. Experimental results show high similarity between synthetic and real fNIRS signals. The joint classification performance of EEG and synthetic fNIRS signals is comparable to or even better than that of EEG with real fNIRS signals. Furthermore, the synthetic signals exhibit similar spatio-temporal features to real signals while preserving spatial relationships with EEG signals. Experimental results suggest that the SCDM may represent a promising paradigm for the acquisition of hybrid EEG-fNIRS signals in MI-BCI systems.
Abstract:When light is scattered or reflected accidentally in the lens, flare artifacts may appear in the captured photos, affecting the photos' visual quality. The main challenge in flare removal is to eliminate various flare artifacts while preserving the original content of the image. To address this challenge, we propose a lightweight Multi-Frequency Deflare Network (MFDNet) based on the Laplacian Pyramid. Our network decomposes the flare-corrupted image into low and high-frequency bands, effectively separating the illumination and content information in the image. The low-frequency part typically contains illumination information, while the high-frequency part contains detailed content information. So our MFDNet consists of two main modules: the Low-Frequency Flare Perception Module (LFFPM) to remove flare in the low-frequency part and the Hierarchical Fusion Reconstruction Module (HFRM) to reconstruct the flare-free image. Specifically, to perceive flare from a global perspective while retaining detailed information for image restoration, LFFPM utilizes Transformer to extract global information while utilizing a convolutional neural network to capture detailed local features. Then HFRM gradually fuses the outputs of LFFPM with the high-frequency component of the image through feature aggregation. Moreover, our MFDNet can reduce the computational cost by processing in multiple frequency bands instead of directly removing the flare on the input image. Experimental results demonstrate that our approach outperforms state-of-the-art methods in removing nighttime flare on real-world and synthetic images from the Flare7K dataset. Furthermore, the computational complexity of our model is remarkably low.
Abstract:Intelligent reflecting surface (IRS) and rate-splitting multiple access (RSMA) technologies are at the forefront of enhancing spectrum and energy efficiency in the next generation multi-antenna communication systems. This paper explores a RSMA system with multiple IRSs, and proposes two purpose-driven scheduling schemes, i.e., the exhaustive IRS-aided (EIA) and opportunistic IRS-aided (OIA) schemes. The aim is to optimize the system weighted energy efficiency (EE) under the above two schemes, respectively. Specifically, the Dinkelbach, branch and bound, successive convex approximation, and the semidefinite relaxation methods are exploited within the alternating optimization framework to obtain effective solutions to the considered problems. The numerical findings indicate that the EIA scheme exhibits better performance compared to the OIA scheme in diverse scenarios when considering the weighted EE, and the proposed algorithm demonstrates superior performance in comparison to the baseline algorithms.
Abstract:Emotion recognition based on Electroencephalography (EEG) has gained significant attention and diversified development in fields such as neural signal processing and affective computing. However, the unique brain anatomy of individuals leads to non-negligible natural differences in EEG signals across subjects, posing challenges for cross-subject emotion recognition. While recent studies have attempted to address these issues, they still face limitations in practical effectiveness and model framework unity. Current methods often struggle to capture the complex spatial-temporal dynamics of EEG signals and fail to effectively integrate multimodal information, resulting in suboptimal performance and limited generalizability across subjects. To overcome these limitations, we develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition that utilizes masked brain signal modeling and interlinked spatial-temporal attention mechanism. The model learns universal latent representations of EEG signals through pre-training on large scale dataset, and employs Interlinked spatial-temporal attention mechanism to process Differential Entropy(DE) features extracted from EEG data. Subsequently, a multi-level fusion layer is proposed to integrate the discriminative features, maximizing the advantages of features across different dimensions and modalities. Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks, outperforming state-of-the-art methods. Additionally, the model is dissected from attention perspective, providing qualitative analysis of emotion-related brain areas, offering valuable insights for affective research in neural signal processing.
Abstract:Effective connectivity estimation plays a crucial role in understanding the interactions and information flow between different brain regions. However, the functional time series used for estimating effective connentivity is derived from certain software, which may lead to large computing errors because of different parameter settings and degrade the ability to model complex causal relationships between brain regions. In this paper, a brain diffuser with hierarchical transformer (BDHT) is proposed to estimate effective connectivity for mild cognitive impairment (MCI) analysis. To our best knowledge, the proposed brain diffuer is the first generative model to apply diffusion models in the application of generating and analyzing multimodal brain networks. Specifically, the BDHT leverages the structural connectivity to guide the reverse processes in an efficient way. It makes the denoising process more reliable and guarantees effective connectivity estimation accuracy. To improve denoising quality, the hierarchical denoising transformer is designed to learn multi-scale features in topological space. Furthermore, the GraphConFormer block can concentrate on both global and adjacent connectivity information. By stacking the multi-head attention and graph convolutional network, the proposed model enhances structure-function complementarity and improves the ability in noise estimation. Experimental evaluations of the denoising diffusion model demonstrate its effectiveness in estimating effective connectivity. The method achieves superior performance in terms of accuracy and robustness compared to existing approaches. It can captures both unidirectal and bidirectional interactions between brain regions, providing a comprehensive understanding of the brain's information processing mechanisms.
Abstract:Brain network analysis has emerged as pivotal method for gaining a deeper understanding of brain functions and disease mechanisms. Despite the existence of various network construction approaches, shortcomings persist in the learning of correlations between structural and functional brain imaging data. In light of this, we introduce a novel method called BrainNetDiff, which combines a multi-head Transformer encoder to extract relevant features from fMRI time series and integrates a conditional latent diffusion model for brain network generation. Leveraging a conditional prompt and a fusion attention mechanism, this method significantly improves the accuracy and stability of brain network generation. To the best of our knowledge, this represents the first framework that employs diffusion for the fusion of the multimodal brain imaging and brain network generation from images to graphs. We validate applicability of this framework in the construction of brain network across healthy and neurologically impaired cohorts using the authentic dataset. Experimental results vividly demonstrate the significant effectiveness of the proposed method across the downstream disease classification tasks. These findings convincingly emphasize the prospective value in the field of brain network research, particularly its key significance in neuroimaging analysis and disease diagnosis. This research provides a valuable reference for the processing of multimodal brain imaging data and introduces a novel, efficient solution to the field of neuroimaging.
Abstract:Underwater images often exhibit poor quality, imbalanced coloration, and low contrast due to the complex and intricate interaction of light, water, and objects. Despite the significant contributions of previous underwater enhancement techniques, there exist several problems that demand further improvement: (i) Current deep learning methodologies depend on Convolutional Neural Networks (CNNs) that lack multi-scale enhancement and also have limited global perception fields. (ii) The scarcity of paired real-world underwater datasets poses a considerable challenge, and the utilization of synthetic image pairs risks overfitting. To address the aforementioned issues, this paper presents a Multi-scale Transformer-based Network called UWFormer for enhancing images at multiple frequencies via semi-supervised learning, in which we propose a Nonlinear Frequency-aware Attention mechanism and a Multi-Scale Fusion Feed-forward Network for low-frequency enhancement. Additionally, we introduce a specialized underwater semi-supervised training strategy, proposing a Subaqueous Perceptual Loss function to generate reliable pseudo labels. Experiments using full-reference and non-reference underwater benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of both quantity and visual quality.
Abstract:Fusing structural-functional images of the brain has shown great potential to analyze the deterioration of Alzheimer's disease (AD). However, it is a big challenge to effectively fuse the correlated and complementary information from multimodal neuroimages. In this paper, a novel model termed cross-modal transformer generative adversarial network (CT-GAN) is proposed to effectively fuse the functional and structural information contained in functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The CT-GAN can learn topological features and generate multimodal connectivity from multimodal imaging data in an efficient end-to-end manner. Moreover, the swapping bi-attention mechanism is designed to gradually align common features and effectively enhance the complementary features between modalities. By analyzing the generated connectivity features, the proposed model can identify AD-related brain connections. Evaluations on the public ADNI dataset show that the proposed CT-GAN can dramatically improve prediction performance and detect AD-related brain regions effectively. The proposed model also provides new insights for detecting AD-related abnormal neural circuits.