Abstract:Semantic communication is a promising technology to improve communication efficiency by transmitting only the semantic information of the source data. However, traditional semantic communication methods primarily focus on data reconstruction tasks, which may not be efficient for emerging generative tasks such as text-to-speech (TTS) synthesis. To address this limitation, this paper develops a novel generative semantic communication framework for TTS synthesis, leveraging generative artificial intelligence technologies. Firstly, we utilize a pre-trained large speech model called WavLM and the residual vector quantization method to construct two semantic knowledge bases (KBs) at the transmitter and receiver, respectively. The KB at the transmitter enables effective semantic extraction, while the KB at the receiver facilitates lifelike speech synthesis. Then, we employ a transformer encoder and a diffusion model to achieve efficient semantic coding without introducing significant communication overhead. Finally, numerical results demonstrate that our framework achieves much higher fidelity for the generated speech than four baselines, in both cases with additive white Gaussian noise channel and Rayleigh fading channel.
Abstract:Unmanned aerial vehicles (UAVs) assisted Internet of things (IoT) systems have become an important part of future wireless communications. To achieve higher communication rate, the joint design of UAV trajectory and resource allocation is crucial. This letter considers a scenario where a multi-antenna UAV is dispatched to simultaneously collect data from multiple ground IoT nodes (GNs) within a time interval. To improve the sum data collection (SDC) volume, i.e., the total data volume transmitted by the GNs, the UAV trajectory, the UAV receive beamforming, the scheduling of the GNs, and the transmit power of the GNs are jointly optimized. Since the problem is non-convex and the optimization variables are highly coupled, it is hard to solve using traditional optimization methods. To find a near-optimal solution, a double-loop structured optimization-driven deep reinforcement learning (DRL) algorithm and a fully DRL-based algorithm are proposed to solve the problem effectively. Simulation results verify that the proposed algorithms outperform two benchmarks with significant improvement in SDC volumes.
Abstract:Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently. Numerical results demonstrate that the proposed algorithm can achieve lower latency than two baseline algorithms.
Abstract:This paper investigates a movable-antenna (MA) array empowered integrated sensing and communications (ISAC) over low-altitude platform (LAP) system to support low-altitude economy (LAE) applications. In the considered system, an unmanned aerial vehicle (UAV) is dispatched to hover in the air, working as the UAV-enabled LAP (ULAP) to provide information transmission and sensing simultaneously for LAE applications. To improve the throughput capacity, we formulate a data rate maximization problem by jointly optimizing the transmit information and sensing beamforming and the antenna positions of the MA array. Since the data rate maximization problem is non-convex with highly coupled variables, we propose an efficient alternation optimization based algorithm, which iteratively optimizes parts of the variables while fixing others. Numerical results show the superiority of the proposed MA array-based scheme in terms of the achievable data rate and beamforming gain compared with two benchmark schemes.
Abstract:Recently, movable antenna (MA) array becomes a promising technology for improving the communication quality in wireless communication systems. In this letter, an unmanned aerial vehicle (UAV) enabled multi-user multi-input-single-output system enhanced by the MA array is investigated. To enhance the throughput capacity, we aim to maximize the achievable data rate by jointly optimizing the transmit beamforming, the UAV trajectory, and the positions of the MA array antennas. The formulated data rate maximization problem is a highly coupled non-convex problem, for which an alternating optimization based algorithm is proposed to get a sub-optimal solution. Numerical results have demonstrated the performance gain of the proposed method compared with conventional method with fixed-position antenna array.
Abstract:Signal detection and modulation classification are two crucial tasks in various wireless communication systems. Different from prior works that investigate them independently, this paper studies the joint signal detection and automatic modulation classification (AMC) by considering a realistic and complex scenario, in which multiple signals with different modulation schemes coexist at different carrier frequencies. We first generate a coexisting RADIOML dataset (CRML23) to facilitate the joint design. Different from the publicly available AMC dataset ignoring the signal detection step and containing only one signal, our synthetic dataset covers the more realistic multiple-signal coexisting scenario. Then, we present a joint framework for detection and classification (JDM) for such a multiple-signal coexisting environment, which consists of two modules for signal detection and AMC, respectively. In particular, these two modules are interconnected using a designated data structure called "proposal". Finally, we conduct extensive simulations over the newly developed dataset, which demonstrate the effectiveness of our designs. Our code and dataset are now available as open-source (https://github.com/Singingkettle/ChangShuoRadioData).
Abstract:Text-to-point-cloud cross-modal localization is an emerging vision-language task critical for future robot-human collaboration. It seeks to localize a position from a city-scale point cloud scene based on a few natural language instructions. In this paper, we address two key limitations of existing approaches: 1) their reliance on ground-truth instances as input; and 2) their neglect of the relative positions among potential instances. Our proposed model follows a two-stage pipeline, including a coarse stage for text-cell retrieval and a fine stage for position estimation. In both stages, we introduce an instance query extractor, in which the cells are encoded by a 3D sparse convolution U-Net to generate the multi-scale point cloud features, and a set of queries iteratively attend to these features to represent instances. In the coarse stage, a row-column relative position-aware self-attention (RowColRPA) module is designed to capture the spatial relations among the instance queries. In the fine stage, a multi-modal relative position-aware cross-attention (RPCA) module is developed to fuse the text and point cloud features along with spatial relations for improving fine position estimation. Experiment results on the KITTI360Pose dataset demonstrate that our model achieves competitive performance with the state-of-the-art models without taking ground-truth instances as input.
Abstract:Federated unlearning has emerged as a promising paradigm to erase the client-level data effect without affecting the performance of collaborative learning models. However, the federated unlearning process often introduces extensive storage overhead and consumes substantial computational resources, thus hindering its implementation in practice. To address this issue, this paper proposes a scalable federated unlearning framework based on isolated sharding and coded computing. We first divide distributed clients into multiple isolated shards across stages to reduce the number of clients being affected. Then, to reduce the storage overhead of the central server, we develop a coded computing mechanism by compressing the model parameters across different shards. In addition, we provide the theoretical analysis of time efficiency and storage effectiveness for the isolated and coded sharding. Finally, extensive experiments on two typical learning tasks, i.e., classification and generation, demonstrate that our proposed framework can achieve better performance than three state-of-the-art frameworks in terms of accuracy, retraining time, storage overhead, and F1 scores for resisting membership inference attacks.
Abstract:Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients. It allows central servers to remove historical data effects within the machine learning model as well as address the "right to be forgotten" issue in federated learning. However, existing works require central servers to retain the historical model parameters from distributed clients, such that allows the central server to utilize these parameters for further training even, after the clients exit the training process. To address this issue, this paper proposes a new blockchain-enabled trustworthy federated unlearning framework. We first design a proof of federated unlearning protocol, which utilizes the Chameleon hash function to verify data removal and eliminate the data contributions stored in other clients' models. Then, an adaptive contribution-based retraining mechanism is developed to reduce the computational overhead and significantly improve the training efficiency. Extensive experiments demonstrate that the proposed framework can achieve a better data removal effect than the state-of-the-art frameworks, marking a significant stride towards trustworthy federated unlearning.
Abstract:3D Visual Grounding (3DVG) aims at localizing 3D object based on textual descriptions. Conventional supervised methods for 3DVG often necessitate extensive annotations and a predefined vocabulary, which can be restrictive. To address this issue, we propose a novel visual programming approach for zero-shot open-vocabulary 3DVG, leveraging the capabilities of large language models (LLMs). Our approach begins with a unique dialog-based method, engaging with LLMs to establish a foundational understanding of zero-shot 3DVG. Building on this, we design a visual program that consists of three types of modules, i.e., view-independent, view-dependent, and functional modules. These modules, specifically tailored for 3D scenarios, work collaboratively to perform complex reasoning and inference. Furthermore, we develop an innovative language-object correlation module to extend the scope of existing 3D object detectors into open-vocabulary scenarios. Extensive experiments demonstrate that our zero-shot approach can outperform some supervised baselines, marking a significant stride towards effective 3DVG.