Department of Automation, Shanghai Jiao Tong University, Shanghai, China, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China, Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, China
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:Personalization stands as the cornerstone of recommender systems (RecSys), striving to sift out redundant information and offer tailor-made services for users. However, the conventional cloud-based RecSys necessitates centralized data collection, posing significant risks of user privacy breaches. In response to this challenge, federated recommender systems (FedRecSys) have emerged, garnering considerable attention. FedRecSys enable users to retain personal data locally and solely share model parameters with low privacy sensitivity for global model training, significantly bolstering the system's privacy protection capabilities. Within the distributed learning framework, the pronounced non-iid nature of user behavior data introduces fresh hurdles to federated optimization. Meanwhile, the ability of federated learning to concurrently learn multiple models presents an opportunity for personalized user modeling. Consequently, the development of personalized FedRecSys (PFedRecSys) is crucial and holds substantial significance. This tutorial seeks to provide an introduction to PFedRecSys, encompassing (1) an overview of existing studies on PFedRecSys, (2) a comprehensive taxonomy of PFedRecSys spanning four pivotal research directions-client-side adaptation, server-side aggregation, communication efficiency, privacy and protection, and (3) exploration of open challenges and promising future directions in PFedRecSys. This tutorial aims to establish a robust foundation and spark new perspectives for subsequent exploration and practical implementations in the evolving realm of RecSys.
Abstract:Spinal cord tumors significantly contribute to neurological morbidity and mortality. Precise morphometric quantification, encompassing the size, location, and type of such tumors, holds promise for optimizing treatment planning strategies. Although recent methods have demonstrated excellent performance in medical image segmentation, they primarily focus on discerning shapes with relatively large morphology such as brain tumors, ignoring the challenging problem of identifying spinal cord tumors which tend to have tiny sizes, diverse locations, and shapes. To tackle this hard problem of multiclass spinal cord tumor segmentation, we propose a new method, called BATseg, to learn a tumor surface distance field by applying our new multiclass boundary-aware loss function. To verify the effectiveness of our approach, we also introduce the first and large-scale spinal cord tumor dataset. It comprises gadolinium-enhanced T1-weighted 3D MRI scans from 653 patients and contains the four most common spinal cord tumor types: astrocytomas, ependymomas, hemangioblastomas, and spinal meningiomas. Extensive experiments on our dataset and another public kidney tumor segmentation dataset show that our proposed method achieves superior performance for multiclass tumor segmentation.
Abstract:Intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) systems have shown notable improvements in efficiency, such as reduced latency, higher data rates, and better energy efficiency. However, the resource competition among users will lead to uneven allocation, increased latency, and lower throughput. Fortunately, the rate-splitting multiple access (RSMA) technique has emerged as a promising solution for managing interference and optimizing resource allocation in MEC systems. This paper studies an IRS-assisted MEC system with RSMA, aiming to jointly optimize the passive beamforming of the IRS, the active beamforming of the base station, the task offloading allocation, the transmit power of users, the ratios of public and private information allocation, and the decoding order of the RSMA to minimize the average delay from a novel uplink transmission perspective. Since the formulated problem is non-convex and the optimization variables are highly coupled, we propose a hierarchical deep reinforcement learning-based algorithm to optimize both continuous and discrete variables of the problem. Additionally, to better extract channel features, we design a novel network architecture within the policy and evaluation networks of the proposed algorithm, combining convolutional neural networks and densely connected convolutional network for feature extraction. Simulation results indicate that the proposed algorithm not only exhibits excellent convergence performance but also outperforms various benchmarks.
Abstract:Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering. MLMF initially processes multi-omics feature matrices by performing multi-layer linear or nonlinear factorization, decomposing the original data into latent feature representations unique to each omics type. These latent representations are subsequently fused into a consensus form, on which spectral clustering is performed to determine subtypes. Additionally, MLMF incorporates a class indicator matrix to handle missing omics data, creating a unified framework that can manage both complete and incomplete multi-omics data. Extensive experiments conducted on 10 multi-omics cancer datasets, both complete and with missing values, demonstrate that MLMF achieves results that are comparable to or surpass the performance of several state-of-the-art approaches.
Abstract:Discovering governing equations of complex network dynamics is a fundamental challenge in contemporary science with rich data, which can uncover the mysterious patterns and mechanisms of the formation and evolution of complex phenomena in various fields and assist in decision-making. In this work, we develop a universal computational tool that can automatically, efficiently, and accurately learn the symbolic changing patterns of complex system states by combining the excellent fitting ability from deep learning and the equation inference ability from pre-trained symbolic regression. We conduct intensive experimental verifications on more than ten representative scenarios from physics, biochemistry, ecology, epidemiology, etc. Results demonstrate the outstanding effectiveness and efficiency of our tool by comparing with the state-of-the-art symbolic regression techniques for network dynamics. The application to real-world systems including global epidemic transmission and pedestrian movements has verified its practical applicability. We believe that our tool can serve as a universal solution to dispel the fog of hidden mechanisms of changes in complex phenomena, advance toward interpretability, and inspire more scientific discoveries.
Abstract:The evaluation of mathematical reasoning capabilities is essential for advancing Artificial General Intelligence (AGI). While Large Language Models (LLMs) have shown impressive performance in solving mathematical problems, existing benchmarks such as GSM8K and MATH present limitations, including narrow problem definitions with specific numbers and reliance on predetermined rules that hinder accurate assessments of reasoning and adaptability. This paper introduces the UTMath Benchmark, which robustly evaluates the models through extensive unit tests. It consists of 1,053 problems across 9 mathematical domains, with over 68 test cases per problem. We propose an innovative evaluation framework inspired by unit testing in software development, focusing on both accuracy and reliability of results. Furthermore, we introduce the Reasoning-to-Coding of Thoughts (RCoT) approach, which encourages LLMs to perform explicit reasoning before generating code, leading to generating more advanced solution and improved performance. Furthermore, we are releasing not only the UTMath benchmark but also the UTMath-Train training dataset (more than 70k samples), to support the community in further exploring mathematical reasoning.
Abstract:Network optimization is a fundamental challenge in the Internet of Things (IoT) network, often characterized by complex features that make it difficult to solve these problems. Recently, generative diffusion models (GDMs) have emerged as a promising new approach to network optimization, with the potential to directly address these optimization problems. However, the application of GDMs in this field is still in its early stages, and there is a noticeable lack of theoretical research and empirical findings. In this study, we first explore the intrinsic characteristics of generative models. Next, we provide a concise theoretical proof and intuitive demonstration of the advantages of generative models over discriminative models in network optimization. Based on this exploration, we implement GDMs as optimizers aimed at learning high-quality solution distributions for given inputs, sampling from these distributions during inference to approximate or achieve optimal solutions. Specifically, we utilize denoising diffusion probabilistic models (DDPMs) and employ a classifier-free guidance mechanism to manage conditional guidance based on input parameters. We conduct extensive experiments across three challenging network optimization problems. By investigating various model configurations and the principles of GDMs as optimizers, we demonstrate the ability to overcome prediction errors and validate the convergence of generated solutions to optimal solutions.We provide code and data at https://github.com/qiyu3816/DiffSG.
Abstract:Spiking Neural Networks (SNNs), renowned for their low power consumption, brain-inspired architecture, and spatio-temporal representation capabilities, have garnered considerable attention in recent years. Similar to Artificial Neural Networks (ANNs), high-quality benchmark datasets are of great importance to the advances of SNNs. However, our analysis indicates that many prevalent neuromorphic datasets lack strong temporal correlation, preventing SNNs from fully exploiting their spatio-temporal representation capabilities. Meanwhile, the integration of event and frame modalities offers more comprehensive visual spatio-temporal information. Yet, the SNN-based cross-modality fusion remains underexplored. In this work, we present a neuromorphic dataset called DVS-SLR that can better exploit the inherent spatio-temporal properties of SNNs. Compared to existing datasets, it offers advantages in terms of higher temporal correlation, larger scale, and more varied scenarios. In addition, our neuromorphic dataset contains corresponding frame data, which can be used for developing SNN-based fusion methods. By virtue of the dual-modal feature of the dataset, we propose a Cross-Modality Attention (CMA) based fusion method. The CMA model efficiently utilizes the unique advantages of each modality, allowing for SNNs to learn both temporal and spatial attention scores from the spatio-temporal features of event and frame modalities, subsequently allocating these scores across modalities to enhance their synergy. Experimental results demonstrate that our method not only improves recognition accuracy but also ensures robustness across diverse scenarios.
Abstract:Graph classification in medical imaging and drug discovery requires accuracy and robust uncertainty quantification. To address this need, we introduce Conditional Prediction ROC (CP-ROC) bands, offering uncertainty quantification for ROC curves and robustness to distributional shifts in test data. Although developed for Tensorized Graph Neural Networks (TGNNs), CP-ROC is adaptable to general Graph Neural Networks (GNNs) and other machine learning models. We establish statistically guaranteed coverage for CP-ROC under a local exchangeability condition. This addresses uncertainty challenges for ROC curves under non-iid setting, ensuring reliability when test graph distributions differ from training data. Empirically, to establish local exchangeability for TGNNs, we introduce a data-driven approach to construct local calibration sets for graphs. Comprehensive evaluations show that CP-ROC significantly improves prediction reliability across diverse tasks. This method enhances uncertainty quantification efficiency and reliability for ROC curves, proving valuable for real-world applications with non-iid objects.