Abstract:Transferable adversarial examples are known to cause threats in practical, black-box attack scenarios. A notable approach to improving transferability is using integrated gradients (IG), originally developed for model interpretability. In this paper, we find that existing IG-based attacks have limited transferability due to their naive adoption of IG in model interpretability. To address this limitation, we focus on the IG integration path and refine it in three aspects: multiplicity, monotonicity, and diversity, supported by theoretical analyses. We propose the Multiple Monotonic Diversified Integrated Gradients (MuMoDIG) attack, which can generate highly transferable adversarial examples on different CNN and ViT models and defenses. Experiments validate that MuMoDIG outperforms the latest IG-based attack by up to 37.3\% and other state-of-the-art attacks by 8.4\%. In general, our study reveals that migrating established techniques to improve transferability may require non-trivial efforts. Code is available at \url{https://github.com/RYC-98/MuMoDIG}.
Abstract:Recent studies have shown that large vision-language models (LVLMs) often suffer from the issue of object hallucinations (OH). To mitigate this issue, we introduce an efficient method that edits the model weights based on an unsafe subspace, which we call HalluSpace in this paper. With truthful and hallucinated text prompts accompanying the visual content as inputs, the HalluSpace can be identified by extracting the hallucinated embedding features and removing the truthful representations in LVLMs. By orthogonalizing the model weights, input features will be projected into the Null space of the HalluSpace to reduce OH, based on which we name our method Nullu. We reveal that HalluSpaces generally contain statistical bias and unimodal priors of the large language models (LLMs) applied to build LVLMs, which have been shown as essential causes of OH in previous studies. Therefore, null space projection suppresses the LLMs' priors to filter out the hallucinated features, resulting in contextually accurate outputs. Experiments show that our method can effectively mitigate OH across different LVLM families without extra inference costs and also show strong performance in general LVLM benchmarks. Code is released at \url{https://github.com/Ziwei-Zheng/Nullu}.
Abstract:Detecting synthetic from real speech is increasingly crucial due to the risks of misinformation and identity impersonation. While various datasets for synthetic speech analysis have been developed, they often focus on specific areas, limiting their utility for comprehensive research. To fill this gap, we propose the Speech-Forensics dataset by extensively covering authentic, synthetic, and partially forged speech samples that include multiple segments synthesized by different high-quality algorithms. Moreover, we propose a TEmporal Speech LocalizaTion network, called TEST, aiming at simultaneously performing authenticity detection, multiple fake segments localization, and synthesis algorithms recognition, without any complex post-processing. TEST effectively integrates LSTM and Transformer to extract more powerful temporal speech representations and utilizes dense prediction on multi-scale pyramid features to estimate the synthetic spans. Our model achieves an average mAP of 83.55% and an EER of 5.25% at the utterance level. At the segment level, it attains an EER of 1.07% and a 92.19% F1 score. These results highlight the model's robust capability for a comprehensive analysis of synthetic speech, offering a promising avenue for future research and practical applications in this field.
Abstract:Targeted poisoning attacks aim to compromise the model's prediction on specific target samples. In a common clean-label setting, they are achieved by slightly perturbing a subset of training samples given access to those specific targets. Despite continuous efforts, it remains unexplored whether such attacks can generalize to unknown variations of those targets. In this paper, we take the first step to systematically study this generalization problem. Observing that the widely adopted, cosine similarity-based attack exhibits limited generalizability, we propose a well-generalizable attack that leverages both the direction and magnitude of model gradients. In particular, we explore diverse target variations, such as an object with varied viewpoints and an animal species with distinct appearances. Extensive experiments across various generalization scenarios demonstrate that our method consistently achieves the best attack effectiveness. For example, our method outperforms the cosine similarity-based attack by 20.95% in attack success rate with similar overall accuracy, averaged over four models on two image benchmark datasets. The code is available at https://github.com/jiaangk/generalizable_tcpa
Abstract:Deep generative models have demonstrated impressive performance in various computer vision applications, including image synthesis, video generation, and medical analysis. Despite their significant advancements, these models may be used for malicious purposes, such as misinformation, deception, and copyright violation. In this paper, we provide a systematic and timely review of research efforts on defenses against AI-generated visual media, covering detection, disruption, and authentication. We review existing methods and summarize the mainstream defense-related tasks within a unified passive and proactive framework. Moreover, we survey the derivative tasks concerning the trustworthiness of defenses, such as their robustness and fairness. For each task, we formulate its general pipeline and propose a taxonomy based on methodological strategies that are uniformly applicable to the primary subtasks. Additionally, we summarize the commonly used evaluation datasets, criteria, and metrics. Finally, by analyzing the reviewed studies, we provide insights into current research challenges and suggest possible directions for future research.
Abstract:In recent years, software systems powered by deep learning (DL) techniques have significantly facilitated people's lives in many aspects. As the backbone of these DL systems, various DL libraries undertake the underlying optimization and computation. However, like traditional software, DL libraries are not immune to bugs, which can pose serious threats to users' personal property and safety. Studying the characteristics of DL libraries, their associated bugs, and the corresponding testing methods is crucial for enhancing the security of DL systems and advancing the widespread application of DL technology. This paper provides an overview of the testing research related to various DL libraries, discusses the strengths and weaknesses of existing methods, and provides guidance and reference for the application of the DL library. This paper first introduces the workflow of DL underlying libraries and the characteristics of three kinds of DL libraries involved, namely DL framework, DL compiler, and DL hardware library. It then provides definitions for DL underlying library bugs and testing. Additionally, this paper summarizes the existing testing methods and tools tailored to these DL libraries separately and analyzes their effectiveness and limitations. It also discusses the existing challenges of DL library testing and outlines potential directions for future research.
Abstract:Deep learning-based monocular depth estimation (MDE), extensively applied in autonomous driving, is known to be vulnerable to adversarial attacks. Previous physical attacks against MDE models rely on 2D adversarial patches, so they only affect a small, localized region in the MDE map but fail under various viewpoints. To address these limitations, we propose 3D Depth Fool (3D$^2$Fool), the first 3D texture-based adversarial attack against MDE models. 3D$^2$Fool is specifically optimized to generate 3D adversarial textures agnostic to model types of vehicles and to have improved robustness in bad weather conditions, such as rain and fog. Experimental results validate the superior performance of our 3D$^2$Fool across various scenarios, including vehicles, MDE models, weather conditions, and viewpoints. Real-world experiments with printed 3D textures on physical vehicle models further demonstrate that our 3D$^2$Fool can cause an MDE error of over 10 meters.
Abstract:The extensive adoption of Self-supervised learning (SSL) has led to an increased security threat from backdoor attacks. While existing research has mainly focused on backdoor attacks in image classification, there has been limited exploration into their implications for object detection. In this work, we propose the first backdoor attack designed for object detection tasks in SSL scenarios, termed Object Transform Attack (SSL-OTA). SSL-OTA employs a trigger capable of altering predictions of the target object to the desired category, encompassing two attacks: Data Poisoning Attack (NA) and Dual-Source Blending Attack (DSBA). NA conducts data poisoning during downstream fine-tuning of the object detector, while DSBA additionally injects backdoors into the pre-trained encoder. We establish appropriate metrics and conduct extensive experiments on benchmark datasets, demonstrating the effectiveness and utility of our proposed attack. Notably, both NA and DSBA achieve high attack success rates (ASR) at extremely low poisoning rates (0.5%). The results underscore the importance of considering backdoor threats in SSL-based object detection and contribute a novel perspective to the field.
Abstract:Adversarial training has achieved substantial performance in defending image retrieval systems against adversarial examples. However, existing studies still suffer from two major limitations: model collapse and weak adversary. This paper addresses these two limitations by proposing collapse-oriented (COLO) adversarial training with triplet decoupling (TRIDE). Specifically, COLO prevents model collapse by temporally orienting the perturbation update direction with a new collapse metric, while TRIDE yields a strong adversary by spatially decoupling the update targets of perturbation into the anchor and the two candidates of a triplet. Experimental results demonstrate that our COLO-TRIDE outperforms the current state of the art by 7% on average over 10 robustness metrics and across 3 popular datasets. In addition, we identify the fairness limitations of commonly used robustness metrics in image retrieval and propose a new metric for more meaningful robustness evaluation. Codes will be made publicly available on GitHub.
Abstract:Transfer-based adversarial attacks raise a severe threat to real-world deep learning systems since they do not require access to target models. Adversarial training (AT), which is recognized as the strongest defense against white-box attacks, has also guaranteed high robustness to (black-box) transfer-based attacks. However, AT suffers from heavy computational overhead since it optimizes the adversarial examples during the whole training process. In this paper, we demonstrate that such heavy optimization is not necessary for AT against transfer-based attacks. Instead, a one-shot adversarial augmentation prior to training is sufficient, and we name this new defense paradigm Data-centric Robust Learning (DRL). Our experimental results show that DRL outperforms widely-used AT techniques (e.g., PGD-AT, TRADES, EAT, and FAT) in terms of black-box robustness and even surpasses the top-1 defense on RobustBench when combined with diverse data augmentations and loss regularizations. We also identify other benefits of DRL, for instance, the model generalization capability and robust fairness.