Abstract:We consider the problem of the best arm identification in the presence of stochastic constraints, where there is a finite number of arms associated with multiple performance measures. The goal is to identify the arm that optimizes the objective measure subject to constraints on the remaining measures. We will explore the popular idea of Thompson sampling (TS) as a means to solve it. To the best of our knowledge, it is the first attempt to extend TS to this problem. We will design a TS-based sampling algorithm, establish its asymptotic optimality in the rate of posterior convergence, and demonstrate its superior performance using numerical examples.
Abstract:With the integration of an additional modality, large vision-language models (LVLMs) exhibit greater vulnerability to safety risks (e.g., jailbreaking) compared to their language-only predecessors. Although recent studies have devoted considerable effort to the post-hoc alignment of LVLMs, the inner safety mechanisms remain largely unexplored. In this paper, we discover that internal activations of LVLMs during the first token generation can effectively identify malicious prompts across different attacks. This inherent safety perception is governed by sparse attention heads, which we term ``safety heads." Further analysis reveals that these heads act as specialized shields against malicious prompts; ablating them leads to higher attack success rates, while the model's utility remains unaffected. By locating these safety heads and concatenating their activations, we construct a straightforward but powerful malicious prompt detector that integrates seamlessly into the generation process with minimal extra inference overhead. Despite its simple structure of a logistic regression model, the detector surprisingly exhibits strong zero-shot generalization capabilities. Experiments across various prompt-based attacks confirm the effectiveness of leveraging safety heads to protect LVLMs. Code is available at \url{https://github.com/Ziwei-Zheng/SAHs}.
Abstract:The task of long-term action anticipation demands solutions that can effectively model temporal dynamics over extended periods while deeply understanding the inherent semantics of actions. Traditional approaches, which primarily rely on recurrent units or Transformer layers to capture long-term dependencies, often fall short in addressing these challenges. Large Language Models (LLMs), with their robust sequential modeling capabilities and extensive commonsense knowledge, present new opportunities for long-term action anticipation. In this work, we introduce the ActionLLM framework, a novel approach that treats video sequences as successive tokens, leveraging LLMs to anticipate future actions. Our baseline model simplifies the LLM architecture by setting future tokens, incorporating an action tuning module, and reducing the textual decoder layer to a linear layer, enabling straightforward action prediction without the need for complex instructions or redundant descriptions. To further harness the commonsense reasoning of LLMs, we predict action categories for observed frames and use sequential textual clues to guide semantic understanding. In addition, we introduce a Cross-Modality Interaction Block, designed to explore the specificity within each modality and capture interactions between vision and textual modalities, thereby enhancing multimodal tuning. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed ActionLLM framework, encouraging a promising direction to explore LLMs in the context of action anticipation. Code is available at https://github.com/2tianyao1/ActionLLM.git.
Abstract:Recent studies have shown that large vision-language models (LVLMs) often suffer from the issue of object hallucinations (OH). To mitigate this issue, we introduce an efficient method that edits the model weights based on an unsafe subspace, which we call HalluSpace in this paper. With truthful and hallucinated text prompts accompanying the visual content as inputs, the HalluSpace can be identified by extracting the hallucinated embedding features and removing the truthful representations in LVLMs. By orthogonalizing the model weights, input features will be projected into the Null space of the HalluSpace to reduce OH, based on which we name our method Nullu. We reveal that HalluSpaces generally contain statistical bias and unimodal priors of the large language models (LLMs) applied to build LVLMs, which have been shown as essential causes of OH in previous studies. Therefore, null space projection suppresses the LLMs' priors to filter out the hallucinated features, resulting in contextually accurate outputs. Experiments show that our method can effectively mitigate OH across different LVLM families without extra inference costs and also show strong performance in general LVLM benchmarks. Code is released at \url{https://github.com/Ziwei-Zheng/Nullu}.
Abstract:Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search, and it mainly contains two steps to find the high-performance architecture: First, the DARTS supernet that consists of mixed operations will be optimized via gradient descent. Second, the final architecture will be built by the selected operations that contribute the most to the supernet. Although DARTS improves the efficiency of NAS, it suffers from the well-known degeneration issue which can lead to deteriorating architectures. Existing works mainly attribute the degeneration issue to the failure of its supernet optimization, while little attention has been paid to the selection method. In this paper, we cease to apply the widely-used magnitude-based selection method and propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss. We show that the degeneration issue can be effectively addressed by using the proposed criterion without any modification of supernet optimization, indicating that the magnitude-based selection method can be a critical reason for the instability of DARTS. The experiments on NAS-Bench-201 and DARTS search spaces show the effectiveness of our method.
Abstract:Generic event boundary detection (GEBD), inspired by human visual cognitive behaviors of consistently segmenting videos into meaningful temporal chunks, finds utility in various applications such as video editing and. In this paper, we demonstrate that SOTA GEBD models often prioritize final performance over model complexity, resulting in low inference speed and hindering efficient deployment in real-world scenarios. We contribute to addressing this challenge by experimentally reexamining the architecture of GEBD models and uncovering several surprising findings. Firstly, we reveal that a concise GEBD baseline model already achieves promising performance without any sophisticated design. Secondly, we find that the widely applied image-domain backbones in GEBD models can contain plenty of architecture redundancy, motivating us to gradually ``modernize'' each component to enhance efficiency. Thirdly, we show that the GEBD models using image-domain backbones conducting the spatiotemporal learning in a spatial-then-temporal greedy manner can suffer from a distraction issue, which might be the inefficient villain for GEBD. Using a video-domain backbone to jointly conduct spatiotemporal modeling is an effective solution for this issue. The outcome of our exploration is a family of GEBD models, named EfficientGEBD, significantly outperforms the previous SOTA methods by up to 1.7\% performance gain and 280\% speedup under the same backbone. Our research prompts the community to design modern GEBD methods with the consideration of model complexity, particularly in resource-aware applications. The code is available at \url{https://github.com/Ziwei-Zheng/EfficientGEBD}.
Abstract:Generic event boundary detection (GEBD) aims at pinpointing event boundaries naturally perceived by humans, playing a crucial role in understanding long-form videos. Given the diverse nature of generic boundaries, spanning different video appearances, objects, and actions, this task remains challenging. Existing methods usually detect various boundaries by the same protocol, regardless of their distinctive characteristics and detection difficulties, resulting in suboptimal performance. Intuitively, a more intelligent and reasonable way is to adaptively detect boundaries by considering their special properties. In light of this, we propose a novel dynamic pipeline for generic event boundaries named DyBDet. By introducing a multi-exit network architecture, DyBDet automatically learns the subnet allocation to different video snippets, enabling fine-grained detection for various boundaries. Besides, a multi-order difference detector is also proposed to ensure generic boundaries can be effectively identified and adaptively processed. Extensive experiments on the challenging Kinetics-GEBD and TAPOS datasets demonstrate that adopting the dynamic strategy significantly benefits GEBD tasks, leading to obvious improvements in both performance and efficiency compared to the current state-of-the-art.
Abstract:Recent proposed neural network-based Temporal Action Detection (TAD) models are inherently limited to extracting the discriminative representations and modeling action instances with various lengths from complex scenes by shared-weights detection heads. Inspired by the successes in dynamic neural networks, in this paper, we build a novel dynamic feature aggregation (DFA) module that can simultaneously adapt kernel weights and receptive fields at different timestamps. Based on DFA, the proposed dynamic encoder layer aggregates the temporal features within the action time ranges and guarantees the discriminability of the extracted representations. Moreover, using DFA helps to develop a Dynamic TAD head (DyHead), which adaptively aggregates the multi-scale features with adjusted parameters and learned receptive fields better to detect the action instances with diverse ranges from videos. With the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen 100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to https://github.com/yangle15/DyFADet-pytorch.
Abstract:Following the advent of the Artificial Intelligence (AI) era of large models, Multimodal Large Language Models (MLLMs) with the ability to understand cross-modal interactions between vision and text have attracted wide attention. Adversarial examples with human-imperceptible perturbation are shown to possess a characteristic known as transferability, which means that a perturbation generated by one model could also mislead another different model. Augmenting the diversity in input data is one of the most significant methods for enhancing adversarial transferability. This method has been certified as a way to significantly enlarge the threat impact under black-box conditions. Research works also demonstrate that MLLMs can be exploited to generate adversarial examples in the white-box scenario. However, the adversarial transferability of such perturbations is quite limited, failing to achieve effective black-box attacks across different models. In this paper, we propose the Typographic-based Semantic Transfer Attack (TSTA), which is inspired by: (1) MLLMs tend to process semantic-level information; (2) Typographic Attack could effectively distract the visual information captured by MLLMs. In the scenarios of Harmful Word Insertion and Important Information Protection, our TSTA demonstrates superior performance.
Abstract:Spoken language understanding (SLU), one of the key enabling technologies for human-computer interaction in IoT devices, provides an easy-to-use user interface. Human speech can contain a lot of user-sensitive information, such as gender, identity, and sensitive content. New types of security and privacy breaches have thus emerged. Users do not want to expose their personal sensitive information to malicious attacks by untrusted third parties. Thus, the SLU system needs to ensure that a potential malicious attacker cannot deduce the sensitive attributes of the users, while it should avoid greatly compromising the SLU accuracy. To address the above challenge, this paper proposes a novel SLU multi-task privacy-preserving model to prevent both the speech recognition (ASR) and identity recognition (IR) attacks. The model uses the hidden layer separation technique so that SLU information is distributed only in a specific portion of the hidden layer, and the other two types of information are removed to obtain a privacy-secure hidden layer. In order to achieve good balance between efficiency and privacy, we introduce a new mechanism of model pre-training, namely joint adversarial training, to further enhance the user privacy. Experiments over two SLU datasets show that the proposed method can reduce the accuracy of both the ASR and IR attacks close to that of a random guess, while leaving the SLU performance largely unaffected.