Abstract:Current Cross-Modality Generation Models (GMs) demonstrate remarkable capabilities in various generative tasks. Given the ubiquity and information richness of vision modality inputs in real-world scenarios, Cross-vision, encompassing Vision-Language Perception (VLP) and Image-to-Image (I2I), tasks have attracted significant attention. Large Vision Language Models (LVLMs) and I2I GMs are employed to handle VLP and I2I tasks, respectively. Previous research indicates that printing typographic words into input images significantly induces LVLMs and I2I GMs to generate disruptive outputs semantically related to those words. Additionally, visual prompts, as a more sophisticated form of typography, are also revealed to pose security risks to various applications of VLP tasks when injected into images. In this paper, we comprehensively investigate the performance impact induced by Typographic Visual Prompt Injection (TVPI) in various LVLMs and I2I GMs. To better observe performance modifications and characteristics of this threat, we also introduce the TVPI Dataset. Through extensive explorations, we deepen the understanding of the underlying causes of the TVPI threat in various GMs and offer valuable insights into its potential origins.
Abstract:The rapid advancement of large language models (LLMs) has significantly improved their performance in code generation tasks. However, existing code benchmarks remain static, consisting of fixed datasets with predefined problems. This makes them vulnerable to memorization during training, where LLMs recall specific test cases instead of generalizing to new problems, leading to data contamination and unreliable evaluation results. To address these issues, we introduce DynaCode, a dynamic, complexity-aware benchmark that overcomes the limitations of static datasets. DynaCode evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures. DynaCode achieves large-scale diversity, generating up to 189 million unique nested code problems across four distinct levels of code complexity, referred to as units, and 16 types of call graphs. Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark, with performance progressively decreasing as complexity increases. This demonstrates DynaCode's ability to effectively differentiate LLMs. Additionally, by leveraging call graphs, we gain insights into LLM behavior, particularly their preference for handling subfunction interactions within nested code.
Abstract:Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
Abstract:Advancements in Large Language Models (LLMs) and their increasing use in medical question-answering necessitate rigorous evaluation of their reliability. A critical challenge lies in hallucination, where models generate plausible yet factually incorrect outputs. In the medical domain, this poses serious risks to patient safety and clinical decision-making. To address this, we introduce MedHallu, the first benchmark specifically designed for medical hallucination detection. MedHallu comprises 10,000 high-quality question-answer pairs derived from PubMedQA, with hallucinated answers systematically generated through a controlled pipeline. Our experiments show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and the medically fine-tuned UltraMedical, struggle with this binary hallucination detection task, with the best model achieving an F1 score as low as 0.625 for detecting "hard" category hallucinations. Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth. Through experiments, we also show incorporating domain-specific knowledge and introducing a "not sure" category as one of the answer categories improves the precision and F1 scores by up to 38% relative to baselines.
Abstract:Web browsing agents powered by large language models (LLMs) have shown tremendous potential in automating complex web-based tasks. Existing approaches typically rely on large LLMs (e.g., GPT-4o) to explore web environments and generate trajectory data, which is then used either for demonstration retrieval (for large LLMs) or to distill small LLMs (e.g., Llama3) in a process that remains decoupled from the exploration. In this paper, we propose AgentSymbiotic, an iterative framework that couples data synthesis with task-performance, yielding a "symbiotic improvement" for both large and small LLMs. Our study uncovers a complementary dynamic between LLM types: while large LLMs excel at generating high-quality trajectories for distillation, the distilled small LLMs-owing to their distinct reasoning capabilities-often choose actions that diverge from those of their larger counterparts. This divergence drives the exploration of novel trajectories, thereby enriching the synthesized data. However, we also observe that the performance of small LLMs becomes a bottleneck in this iterative enhancement process. To address this, we propose two innovations in LLM distillation: a speculative data synthesis strategy that mitigates off-policy bias, and a multi-task learning approach designed to boost the reasoning capabilities of the student LLM. Furthermore, we introduce a Hybrid Mode for Privacy Preservation to address user privacy concerns. Evaluated on the WEBARENA benchmark, AgentSymbiotic achieves SOTA performance with both LLM types. Our best Large LLM agent reaches 52%, surpassing the previous best of 45%, while our 8B distilled model demonstrates a competitive 49%, exceeding the prior best of 28%. Code will be released upon acceptance.
Abstract:Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations-where LLMs direct the discourse and steer the conversation's objectives-remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.
Abstract:Large Language Models (LLMs) demonstrate remarkable zero-shot performance across various natural language processing tasks. The integration of multimodal encoders extends their capabilities, enabling the development of Multimodal Large Language Models that process vision, audio, and text. However, these capabilities also raise significant security concerns, as these models can be manipulated to generate harmful or inappropriate content through jailbreak. While extensive research explores the impact of modality-specific input edits on text-based LLMs and Large Vision-Language Models in jailbreak, the effects of audio-specific edits on Large Audio-Language Models (LALMs) remain underexplored. Hence, this paper addresses this gap by investigating how audio-specific edits influence LALMs inference regarding jailbreak. We introduce the Audio Editing Toolbox (AET), which enables audio-modality edits such as tone adjustment, word emphasis, and noise injection, and the Edited Audio Datasets (EADs), a comprehensive audio jailbreak benchmark. We also conduct extensive evaluations of state-of-the-art LALMs to assess their robustness under different audio edits. This work lays the groundwork for future explorations on audio-modality interactions in LALMs security.
Abstract:Current image generation models can effortlessly produce high-quality, highly realistic images, but this also increases the risk of misuse. In various Text-to-Image or Image-to-Image tasks, attackers can generate a series of images containing inappropriate content by simply editing the language modality input. Currently, to prevent this security threat, the various guard or defense methods that are proposed also focus on defending the language modality. However, in practical applications, threats in the visual modality, particularly in tasks involving the editing of real-world images, pose greater security risks as they can easily infringe upon the rights of the image owner. Therefore, this paper uses a method named typographic attack to reveal that various image generation models also commonly face threats in the vision modality. Furthermore, we also evaluate the defense performance of various existing methods when facing threats in the vision modality and uncover their ineffectiveness. Finally, we propose the Vision Modal Threats in Image Generation Models (VMT-IGMs) dataset, which would serve as a baseline for evaluating the vision modality vulnerability of various image generation models.
Abstract:Traffic Sign Recognition (TSR) is crucial for safe and correct driving automation. Recent works revealed a general vulnerability of TSR models to physical-world adversarial attacks, which can be low-cost, highly deployable, and capable of causing severe attack effects such as hiding a critical traffic sign or spoofing a fake one. However, so far existing works generally only considered evaluating the attack effects on academic TSR models, leaving the impacts of such attacks on real-world commercial TSR systems largely unclear. In this paper, we conduct the first large-scale measurement of physical-world adversarial attacks against commercial TSR systems. Our testing results reveal that it is possible for existing attack works from academia to have highly reliable (100\%) attack success against certain commercial TSR system functionality, but such attack capabilities are not generalizable, leading to much lower-than-expected attack success rates overall. We find that one potential major factor is a spatial memorization design that commonly exists in today's commercial TSR systems. We design new attack success metrics that can mathematically model the impacts of such design on the TSR system-level attack success, and use them to revisit existing attacks. Through these efforts, we uncover 7 novel observations, some of which directly challenge the observations or claims in prior works due to the introduction of the new metrics.
Abstract:Current text-to-image (T2I) synthesis diffusion models raise misuse concerns, particularly in creating prohibited or not-safe-for-work (NSFW) images. To address this, various safety mechanisms and red teaming attack methods are proposed to enhance or expose the T2I model's capability to generate unsuitable content. However, many red teaming attack methods assume knowledge of the text encoders, limiting their practical usage. In this work, we rethink the case of \textit{purely black-box} attacks without prior knowledge of the T2l model. To overcome the unavailability of gradients and the inability to optimize attacks within a discrete prompt space, we propose DiffZOO which applies Zeroth Order Optimization to procure gradient approximations and harnesses both C-PRV and D-PRV to enhance attack prompts within the discrete prompt domain. We evaluated our method across multiple safety mechanisms of the T2I diffusion model and online servers. Experiments on multiple state-of-the-art safety mechanisms show that DiffZOO attains an 8.5% higher average attack success rate than previous works, hence its promise as a practical red teaming tool for T2l models.