Abstract:The message-passing mechanism of graph convolutional networks (i.e., GCNs) enables label information to be propagated to a broader range of neighbors, thereby increasing the utilization of labels. However, the label information is not always effectively utilized in the traditional GCN framework. To address this issue, we propose a new two-step framework called ELU-GCN. In the first stage, ELU-GCN conducts graph learning to learn a new graph structure (\ie ELU-graph), which enables GCNs to effectively utilize label information. In the second stage, we design a new graph contrastive learning on the GCN framework for representation learning by exploring the consistency and mutually exclusive information between the learned ELU graph and the original graph. Moreover, we theoretically demonstrate that the proposed method can ensure the generalization ability of GCNs. Extensive experiments validate the superiority of the proposed method.
Abstract:Uncertainty quantification (UQ) in natural language generation (NLG) tasks remains an open challenge, exacerbated by the intricate nature of the recent large language models (LLMs). This study investigates adapting conformal prediction (CP), which can convert any heuristic measure of uncertainty into rigorous theoretical guarantees by constructing prediction sets, for black-box LLMs in open-ended NLG tasks. We propose a sampling-based uncertainty measure leveraging self-consistency and develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the design of the CP algorithm. Experimental results indicate that our uncertainty measure generally surpasses prior state-of-the-art methods. Furthermore, we calibrate the prediction sets within the model's unfixed answer distribution and achieve strict control over the correctness coverage rate across 6 LLMs on 4 free-form NLG datasets, spanning general-purpose and medical domains, while the small average set size further highlights the efficiency of our method in providing trustworthy guarantees for practical open-ended NLG applications.
Abstract:Uncertainty estimation plays a pivotal role in ensuring the reliability of safety-critical human-AI interaction systems, particularly in the medical domain. However, a general method for quantifying the uncertainty of free-form answers has yet to be established in open-ended medical question-answering (QA) tasks, where irrelevant words and sequences with limited semantic information can be the primary source of uncertainty due to the presence of generative inequality. In this paper, we propose the Word-Sequence Entropy (WSE), which calibrates the uncertainty proportion at both the word and sequence levels according to the semantic relevance, with greater emphasis placed on keywords and more relevant sequences when performing uncertainty quantification. We compare WSE with 6 baseline methods on 5 free-form medical QA datasets, utilizing 7 "off-the-shelf" large language models (LLMs), and show that WSE exhibits superior performance on accurate uncertainty measurement under two standard criteria for correctness evaluation (e.g., WSE outperforms existing state-of-the-art method by 3.23% AUROC on the MedQA dataset). Additionally, in terms of the potential for real-world medical QA applications, we achieve a significant enhancement in the performance of LLMs when employing sequences with lower uncertainty, identified by WSE, as final answers (e.g., +6.36% accuracy improvement on the COVID-QA dataset), without requiring any additional task-specific fine-tuning or architectural modifications.
Abstract:Though diffusion models excel in image generation, their step-by-step denoising leads to slow generation speeds. Consistency training addresses this issue with single-step sampling but often produces lower-quality generations and requires high training costs. In this paper, we show that optimizing consistency training loss minimizes the Wasserstein distance between target and generated distributions. As timestep increases, the upper bound accumulates previous consistency training losses. Therefore, larger batch sizes are needed to reduce both current and accumulated losses. We propose Adversarial Consistency Training (ACT), which directly minimizes the Jensen-Shannon (JS) divergence between distributions at each timestep using a discriminator. Theoretically, ACT enhances generation quality, and convergence. By incorporating a discriminator into the consistency training framework, our method achieves improved FID scores on CIFAR10 and ImageNet 64$\times$64, retains zero-shot image inpainting capabilities, and uses less than $1/6$ of the original batch size and fewer than $1/2$ of the model parameters and training steps compared to the baseline method, this leads to a substantial reduction in resource consumption.
Abstract:The presence of label noise in the training data has a profound impact on the generalization of deep neural networks (DNNs). In this study, we introduce and theoretically demonstrate a simple feature noise method, which directly adds noise to the features of training data, can enhance the generalization of DNNs under label noise. Specifically, we conduct theoretical analyses to reveal that label noise leads to weakened DNN generalization by loosening the PAC-Bayes generalization bound, and feature noise results in better DNN generalization by imposing an upper bound on the mutual information between the model weights and the features, which constrains the PAC-Bayes generalization bound. Furthermore, to ensure effective generalization of DNNs in the presence of label noise, we conduct application analyses to identify the optimal types and levels of feature noise to add for obtaining desirable label noise generalization. Finally, extensive experimental results on several popular datasets demonstrate the feature noise method can significantly enhance the label noise generalization of the state-of-the-art label noise method.
Abstract:Image synthesis has seen significant advancements with the advent of diffusion-based generative models like Denoising Diffusion Probabilistic Models (DDPM) and text-to-image diffusion models. Despite their efficacy, there is a dearth of research dedicated to detecting diffusion-generated images, which could pose potential security and privacy risks. This paper addresses this gap by proposing a novel detection method called Stepwise Error for Diffusion-generated Image Detection (SeDID). Comprising statistical-based $\text{SeDID}_{\text{Stat}}$ and neural network-based $\text{SeDID}_{\text{NNs}}$, SeDID exploits the unique attributes of diffusion models, namely deterministic reverse and deterministic denoising computation errors. Our evaluations demonstrate SeDID's superior performance over existing methods when applied to diffusion models. Thus, our work makes a pivotal contribution to distinguishing diffusion model-generated images, marking a significant step in the domain of artificial intelligence security.
Abstract:Recently, MLP-based models have become popular and attained significant performance on medium-scale datasets (e.g., ImageNet-1k). However, their direct applications to small-scale images remain limited. To address this issue, we design a new MLP-based network, namely Caterpillar, by proposing a key module of Shifted-Pillars-Concatenation (SPC) for exploiting the inductive bias of locality. SPC consists of two processes: (1) Pillars-Shift, which is to shift all pillars within an image along different directions to generate copies, and (2) Pillars-Concatenation, which is to capture the local information from discrete shift neighborhoods of the shifted copies. Extensive experiments demonstrate its strong scalability and superior performance on popular small-scale datasets, and the competitive performance on ImageNet-1K to recent state-of-the-art methods.
Abstract:Recently, diffusion models have achieved remarkable success in generating tasks, including image and audio generation. However, like other generative models, diffusion models are prone to privacy issues. In this paper, we propose an efficient query-based membership inference attack (MIA), namely Proximal Initialization Attack (PIA), which utilizes groundtruth trajectory obtained by $\epsilon$ initialized in $t=0$ and predicted point to infer memberships. Experimental results indicate that the proposed method can achieve competitive performance with only two queries on both discrete-time and continuous-time diffusion models. Moreover, previous works on the privacy of diffusion models have focused on vision tasks without considering audio tasks. Therefore, we also explore the robustness of diffusion models to MIA in the text-to-speech (TTS) task, which is an audio generation task. To the best of our knowledge, this work is the first to study the robustness of diffusion models to MIA in the TTS task. Experimental results indicate that models with mel-spectrogram (image-like) output are vulnerable to MIA, while models with audio output are relatively robust to MIA. {Code is available at \url{https://github.com/kong13661/PIA}}.
Abstract:Recent works reveal that adversarial augmentation benefits the generalization of neural networks (NNs) if used in an appropriate manner. In this paper, we introduce Temporal Adversarial Augmentation (TA), a novel video augmentation technique that utilizes temporal attention. Unlike conventional adversarial augmentation, TA is specifically designed to shift the attention distributions of neural networks with respect to video clips by maximizing a temporal-related loss function. We demonstrate that TA will obtain diverse temporal views, which significantly affect the focus of neural networks. Training with these examples remedies the flaw of unbalanced temporal information perception and enhances the ability to defend against temporal shifts, ultimately leading to better generalization. To leverage TA, we propose Temporal Video Adversarial Fine-tuning (TAF) framework for improving video representations. TAF is a model-agnostic, generic, and interpretability-friendly training strategy. We evaluate TAF with four powerful models (TSM, GST, TAM, and TPN) over three challenging temporal-related benchmarks (Something-something V1&V2 and diving48). Experimental results demonstrate that TAF effectively improves the test accuracy of these models with notable margins without introducing additional parameters or computational costs. As a byproduct, TAF also improves the robustness under out-of-distribution (OOD) settings. Code is available at https://github.com/jinhaoduan/TAF.
Abstract:Multi-view clustering (MvC) aims at exploring the category structure among multi-view data without label supervision. Multiple views provide more information than single views and thus existing MvC methods can achieve satisfactory performance. However, their performance might seriously degenerate when the views are noisy in practical scenarios. In this paper, we first formally investigate the drawback of noisy views and then propose a theoretically grounded deep MvC method (namely MvCAN) to address this issue. Specifically, we propose a novel MvC objective that enables un-shared parameters and inconsistent clustering predictions across multiple views to reduce the side effects of noisy views. Furthermore, a non-parametric iterative process is designed to generate a robust learning target for mining multiple views' useful information. Theoretical analysis reveals that MvCAN works by achieving the multi-view consistency, complementarity, and noise robustness. Finally, experiments on public datasets demonstrate that MvCAN outperforms state-of-the-art methods and is robust against the existence of noisy views.