Abstract:Recently, diffusion-based blind super-resolution (SR) methods have shown great ability to generate high-resolution images with abundant high-frequency detail, but the detail is often achieved at the expense of fidelity. Meanwhile, another line of research focusing on rectifying the reverse process of diffusion models (i.e., diffusion guidance), has demonstrated the power to generate high-fidelity results for non-blind SR. However, these methods rely on known degradation kernels, making them difficult to apply to blind SR. To address these issues, we introduce degradation-aware models that can be integrated into the diffusion guidance framework, eliminating the need to know degradation kernels. Additionally, we propose two novel techniques input perturbation and guidance scalar to further improve our performance. Extensive experimental results show that our proposed method has superior performance over state-of-the-art methods on blind SR benchmarks
Abstract:Graph Neural Networks (GNNs) are the mainstream method to learn pervasive graph data and are widely deployed in industry, making their intellectual property valuable. However, protecting GNNs from unauthorized use remains a challenge. Watermarking, which embeds ownership information into a model, is a potential solution. However, existing watermarking methods have two key limitations: First, almost all of them focus on non-graph data, with watermarking GNNs for complex graph data largely unexplored. Second, the de facto backdoor-based watermarking methods pollute training data and induce ownership ambiguity through intentional misclassification. Our explanation-based watermarking inherits the strengths of backdoor-based methods (e.g., robust to watermark removal attacks), but avoids data pollution and eliminates intentional misclassification. In particular, our method learns to embed the watermark in GNN explanations such that this unique watermark is statistically distinct from other potential solutions, and ownership claims must show statistical significance to be verified. We theoretically prove that, even with full knowledge of our method, locating the watermark is an NP-hard problem. Empirically, our method manifests robustness to removal attacks like fine-tuning and pruning. By addressing these challenges, our approach marks a significant advancement in protecting GNN intellectual property.
Abstract:Machine unlearning (MU), which seeks to erase the influence of specific unwanted data from already-trained models, is becoming increasingly vital in model editing, particularly to comply with evolving data regulations like the ``right to be forgotten''. Conventional approaches are predominantly model-based, typically requiring retraining or fine-tuning the model's weights to meet unlearning requirements. In this work, we approach the MU problem from a novel input perturbation-based perspective, where the model weights remain intact throughout the unlearning process. We demonstrate the existence of a proactive input-based unlearning strategy, referred to forget vector, which can be generated as an input-agnostic data perturbation and remains as effective as model-based approximate unlearning approaches. We also explore forget vector arithmetic, whereby multiple class-specific forget vectors are combined through simple operations (e.g., linear combinations) to generate new forget vectors for unseen unlearning tasks, such as forgetting arbitrary subsets across classes. Extensive experiments validate the effectiveness and adaptability of the forget vector, showcasing its competitive performance relative to state-of-the-art model-based methods. Codes are available at https://github.com/Changchangsun/Forget-Vector.
Abstract:Graph classification is essential for understanding complex biological systems, where molecular structures and interactions are naturally represented as graphs. Traditional graph neural networks (GNNs) perform well on static tasks but struggle in dynamic settings due to catastrophic forgetting. We present Perturbed and Sparsified Continual Graph Learning (PSCGL), a robust and efficient continual graph learning framework for graph data classification, specifically targeting biological datasets. We introduce a perturbed sampling strategy to identify critical data points that contribute to model learning and a motif-based graph sparsification technique to reduce storage needs while maintaining performance. Additionally, our PSCGL framework inherently defends against graph backdoor attacks, which is crucial for applications in sensitive biological contexts. Extensive experiments on biological datasets demonstrate that PSCGL not only retains knowledge across tasks but also enhances the efficiency and robustness of graph classification models in biology.
Abstract:Deep learning models have shown considerable vulnerability to adversarial attacks, particularly as attacker strategies become more sophisticated. While traditional adversarial training (AT) techniques offer some resilience, they often focus on defending against a single type of attack, e.g., the $\ell_\infty$-norm attack, which can fail for other types. This paper introduces a computationally efficient multilevel $\ell_p$ defense, called the Efficient Robust Mode Connectivity (EMRC) method, which aims to enhance a deep learning model's resilience against multiple $\ell_p$-norm attacks. Similar to analytical continuation approaches used in continuous optimization, the method blends two $p$-specific adversarially optimal models, the $\ell_1$- and $\ell_\infty$-norm AT solutions, to provide good adversarial robustness for a range of $p$. We present experiments demonstrating that our approach performs better on various attacks as compared to AT-$\ell_\infty$, E-AT, and MSD, for datasets/architectures including: CIFAR-10, CIFAR-100 / PreResNet110, WideResNet, ViT-Base.
Abstract:Deep neural networks are susceptible to backdoor attacks, where adversaries manipulate model predictions by inserting malicious samples into the training data. Currently, there is still a lack of direct filtering methods for identifying suspicious training data to unveil potential backdoor samples. In this paper, we propose a novel method, Prediction Shift Backdoor Detection (PSBD), leveraging an uncertainty-based approach requiring minimal unlabeled clean validation data. PSBD is motivated by an intriguing Prediction Shift (PS) phenomenon, where poisoned models' predictions on clean data often shift away from true labels towards certain other labels with dropout applied during inference, while backdoor samples exhibit less PS. We hypothesize PS results from neuron bias effect, making neurons favor features of certain classes. PSBD identifies backdoor training samples by computing the Prediction Shift Uncertainty (PSU), the variance in probability values when dropout layers are toggled on and off during model inference. Extensive experiments have been conducted to verify the effectiveness and efficiency of PSBD, which achieves state-of-the-art results among mainstream detection methods.
Abstract:Graph Neural Networks (GNNs) have gained popularity in numerous domains, yet they are vulnerable to backdoor attacks that can compromise their performance and ethical application. The detection of these attacks is crucial for maintaining the reliability and security of GNN classification tasks, but effective detection techniques are lacking. Following an initial investigation, we observed that while graph-level explanations can offer limited insights, their effectiveness in detecting backdoor triggers is inconsistent and incomplete. To bridge this gap, we extract and transform secondary outputs of GNN explanation mechanisms, designing seven novel metrics that more effectively detect backdoor attacks. Additionally, we develop an adaptive attack to rigorously evaluate our approach. We test our method on multiple benchmark datasets and examine its efficacy against various attack models. Our results show that our method can achieve high detection performance, marking a significant advancement in safeguarding GNNs against backdoor attacks.
Abstract:Modern machine learning (ML) systems demand substantial training data, often resorting to external sources. Nevertheless, this practice renders them vulnerable to backdoor poisoning attacks. Prior backdoor defense strategies have primarily focused on the identification of backdoored models or poisoned data characteristics, typically operating under the assumption of access to clean data. In this work, we delve into a relatively underexplored challenge: the automatic identification of backdoor data within a poisoned dataset, all under realistic conditions, i.e., without the need for additional clean data or without manually defining a threshold for backdoor detection. We draw an inspiration from the scaled prediction consistency (SPC) technique, which exploits the prediction invariance of poisoned data to an input scaling factor. Based on this, we pose the backdoor data identification problem as a hierarchical data splitting optimization problem, leveraging a novel SPC-based loss function as the primary optimization objective. Our innovation unfolds in several key aspects. First, we revisit the vanilla SPC method, unveiling its limitations in addressing the proposed backdoor identification problem. Subsequently, we develop a bi-level optimization-based approach to precisely identify backdoor data by minimizing the advanced SPC loss. Finally, we demonstrate the efficacy of our proposal against a spectrum of backdoor attacks, encompassing basic label-corrupted attacks as well as more sophisticated clean-label attacks, evaluated across various benchmark datasets. Experiment results show that our approach often surpasses the performance of current baselines in identifying backdoor data points, resulting in about 4%-36% improvement in average AUROC. Codes are available at https://github.com/OPTML-Group/BackdoorMSPC.
Abstract:Uncertainty estimation plays a pivotal role in ensuring the reliability of safety-critical human-AI interaction systems, particularly in the medical domain. However, a general method for quantifying the uncertainty of free-form answers has yet to be established in open-ended medical question-answering (QA) tasks, where irrelevant words and sequences with limited semantic information can be the primary source of uncertainty due to the presence of generative inequality. In this paper, we propose the Word-Sequence Entropy (WSE), which calibrates the uncertainty proportion at both the word and sequence levels according to the semantic relevance, with greater emphasis placed on keywords and more relevant sequences when performing uncertainty quantification. We compare WSE with 6 baseline methods on 5 free-form medical QA datasets, utilizing 7 "off-the-shelf" large language models (LLMs), and show that WSE exhibits superior performance on accurate uncertainty measurement under two standard criteria for correctness evaluation (e.g., WSE outperforms existing state-of-the-art method by 3.23% AUROC on the MedQA dataset). Additionally, in terms of the potential for real-world medical QA applications, we achieve a significant enhancement in the performance of LLMs when employing sequences with lower uncertainty, identified by WSE, as final answers (e.g., +6.36% accuracy improvement on the COVID-QA dataset), without requiring any additional task-specific fine-tuning or architectural modifications.
Abstract:This paper addresses the challenge of transient stability in power systems with missing parameters and uncertainty propagation in swing equations. We introduce a novel application of Physics-Informed Neural Networks (PINNs), specifically an Ensemble of PINNs (E-PINNs), to estimate critical parameters like rotor angle and inertia coefficient with enhanced accuracy and reduced computational load. E-PINNs capitalize on the underlying physical principles of swing equations to provide a robust solution. Our approach not only facilitates efficient parameter estimation but also quantifies uncertainties, delivering probabilistic insights into the system behavior. The efficacy of E-PINNs is demonstrated through the analysis of $1$-bus and $2$-bus systems, highlighting the model's ability to handle parameter variability and data scarcity. The study advances the application of machine learning in power system stability, paving the way for reliable and computationally efficient transient stability analysis.