Abstract:Real-time execution is essential for cyber-physical systems such as robots. These systems operate in dynamic real-world environments where even small delays can undermine responsiveness and compromise performance. Asynchronous inference has recently emerged as a system-level paradigm for real-time robot manipulation, enabling the next action chunk to be predicted while the current one is being executed. While this approach achieves real-time responsiveness, naive integration often results in execution failure. Previous methods attributed this failure to inter-chunk discontinuity and developed test-time algorithms to smooth chunk boundaries. In contrast, we identify another critical yet overlooked factor: intra-chunk inconsistency, where the robot's executed action chunk partially misaligns with its current perception. To address this, we propose REMAC, which learns corrective adjustments on the pretrained policy through masked action chunking, enabling the policy to remain resilient under mismatches between intended actions and actual execution during asynchronous inference. In addition, we introduce a prefix-preserved sampling procedure to reinforce inter-chunk continuity. Overall, our method delivers more reliable policies without incurring additional latency. Extensive experiments in both simulation and real-world settings demonstrate that our method enables faster task execution, maintains robustness across varying delays, and consistently achieves higher completion rates.
Abstract:We present CogniMap3D, a bioinspired framework for dynamic 3D scene understanding and reconstruction that emulates human cognitive processes. Our approach maintains a persistent memory bank of static scenes, enabling efficient spatial knowledge storage and rapid retrieval. CogniMap3D integrates three core capabilities: a multi-stage motion cue framework for identifying dynamic objects, a cognitive mapping system for storing, recalling, and updating static scenes across multiple visits, and a factor graph optimization strategy for refining camera poses. Given an image stream, our model identifies dynamic regions through motion cues with depth and camera pose priors, then matches static elements against its memory bank. When revisiting familiar locations, CogniMap3D retrieves stored scenes, relocates cameras, and updates memory with new observations. Evaluations on video depth estimation, camera pose reconstruction, and 3D mapping tasks demonstrate its state-of-the-art performance, while effectively supporting continuous scene understanding across extended sequences and multiple visits.




Abstract:We introduce Consistent Instance Field, a continuous and probabilistic spatio-temporal representation for dynamic scene understanding. Unlike prior methods that rely on discrete tracking or view-dependent features, our approach disentangles visibility from persistent object identity by modeling each space-time point with an occupancy probability and a conditional instance distribution. To realize this, we introduce a novel instance-embedded representation based on deformable 3D Gaussians, which jointly encode radiance and semantic information and are learned directly from input RGB images and instance masks through differentiable rasterization. Furthermore, we introduce new mechanisms to calibrate per-Gaussian identities and resample Gaussians toward semantically active regions, ensuring consistent instance representations across space and time. Experiments on HyperNeRF and Neu3D datasets demonstrate that our method significantly outperforms state-of-the-art methods on novel-view panoptic segmentation and open-vocabulary 4D querying tasks.




Abstract:Dataset distillation aims to synthesize compact yet informative datasets that allow models trained on them to achieve performance comparable to training on the full dataset. While this approach has shown promising results for image data, extending dataset distillation methods to video data has proven challenging and often leads to suboptimal performance. In this work, we first identify the core challenge in video set distillation as the substantial increase in learnable parameters introduced by the temporal dimension of video, which complicates optimization and hinders convergence. To address this issue, we observe that a single frame is often sufficient to capture the discriminative semantics of a video. Leveraging this insight, we propose Single-Frame Video set Distillation (SFVD), a framework that distills videos into highly informative frames for each class. Using differentiable interpolation, these frames are transformed into video sequences and matched with the original dataset, while updates are restricted to the frames themselves for improved optimization efficiency. To further incorporate temporal information, the distilled frames are combined with sampled real videos from real videos during the matching process through a channel reshaping layer. Extensive experiments on multiple benchmarks demonstrate that SFVD substantially outperforms prior methods, achieving improvements of up to 5.3% on MiniUCF, thereby offering a more effective solution.
Abstract:Accurately modeling light transport is essential for realistic image synthesis. Photon mapping provides physically grounded estimates of complex global illumination effects such as caustics and specular-diffuse interactions, yet its per-view radiance estimation remains computationally inefficient when rendering multiple views of the same scene. The inefficiency arises from independent photon tracing and stochastic kernel estimation at each viewpoint, leading to inevitable redundant computation. To accelerate multi-view rendering, we reformulate photon mapping as a continuous and reusable radiance function. Specifically, we introduce the Gaussian Photon Field (GPF), a learnable representation that encodes photon distributions as anisotropic 3D Gaussian primitives parameterized by position, rotation, scale, and spectrum. GPF is initialized from physically traced photons in the first SPPM iteration and optimized using multi-view supervision of final radiance, distilling photon-based light transport into a continuous field. Once trained, the field enables differentiable radiance evaluation along camera rays without repeated photon tracing or iterative refinement. Extensive experiments on scenes with complex light transport, such as caustics and specular-diffuse interactions, demonstrate that GPF attains photon-level accuracy while reducing computation by orders of magnitude, unifying the physical rigor of photon-based rendering with the efficiency of neural scene representations.




Abstract:Current visual grounding models are either based on a Multimodal Large Language Model (MLLM) that performs auto-regressive decoding, which is slow and risks hallucinations, or on re-aligning an LLM with vision features to learn new special or object tokens for grounding, which may undermine the LLM's pretrained reasoning ability. In contrast, we propose VGent, a modular encoder-decoder architecture that explicitly disentangles high-level reasoning and low-level bounding box prediction. Specifically, a frozen MLLM serves as the encoder to provide untouched powerful reasoning capabilities, while a decoder takes high-quality boxes proposed by detectors as queries and selects target box(es) via cross-attending on encoder's hidden states. This design fully leverages advances in both object detection and MLLM, avoids the pitfalls of auto-regressive decoding, and enables fast inference. Moreover, it supports modular upgrades of both the encoder and decoder to benefit the whole system: we introduce (i) QuadThinker, an RL-based training paradigm for enhancing multi-target reasoning ability of the encoder; (ii) mask-aware label for resolving detection-segmentation ambiguity; and (iii) global target recognition to improve the recognition of all the targets which benefits the selection among augmented proposals. Experiments on multi-target visual grounding benchmarks show that VGent achieves a new state-of-the-art with +20.6% F1 improvement over prior methods, and further boosts gIoU by +8.2% and cIoU by +5.8% under visual reference challenges, while maintaining constant, fast inference latency.




Abstract:Most existing Vision-Language-Action (VLA) models rely primarily on RGB information, while ignoring geometric cues crucial for spatial reasoning and manipulation. In this work, we introduce GLaD, a geometry-aware VLA framework that incorporates 3D geometric priors during pretraining through knowledge distillation. Rather than distilling geometric features solely into the vision encoder, we align the LLM's hidden states corresponding to visual tokens with features from a frozen geometry-aware vision transformer (VGGT), ensuring that geometric understanding is deeply integrated into the multimodal representations that drive action prediction. Pretrained on the Bridge dataset with this geometry distillation mechanism, GLaD achieves 94.1% average success rate across four LIBERO task suites, outperforming UniVLA (92.5%) which uses identical pretraining data. These results validate that geometry-aware pretraining enhances spatial reasoning and policy generalization without requiring explicit depth sensors or 3D annotations.
Abstract:We present TraceFlow, a novel framework for high-fidelity rendering of dynamic specular scenes by addressing two key challenges: precise reflection direction estimation and physically accurate reflection modeling. To achieve this, we propose a Residual Material-Augmented 2D Gaussian Splatting representation that models dynamic geometry and material properties, allowing accurate reflection ray computation. Furthermore, we introduce a Dynamic Environment Gaussian and a hybrid rendering pipeline that decomposes rendering into diffuse and specular components, enabling physically grounded specular synthesis via rasterization and ray tracing. Finally, we devise a coarse-to-fine training strategy to improve optimization stability and promote physically meaningful decomposition. Extensive experiments on dynamic scene benchmarks demonstrate that TraceFlow outperforms prior methods both quantitatively and qualitatively, producing sharper and more realistic specular reflections in complex dynamic environments.




Abstract:Evaluating the robustness of Large Vision-Language Models (LVLMs) is essential for their continued development and responsible deployment in real-world applications. However, existing robustness benchmarks typically focus on hallucination or misleading textual inputs, while largely overlooking the equally critical challenge posed by misleading visual inputs in assessing visual understanding. To fill this important gap, we introduce MVI-Bench, the first comprehensive benchmark specially designed for evaluating how Misleading Visual Inputs undermine the robustness of LVLMs. Grounded in fundamental visual primitives, the design of MVI-Bench centers on three hierarchical levels of misleading visual inputs: Visual Concept, Visual Attribute, and Visual Relationship. Using this taxonomy, we curate six representative categories and compile 1,248 expertly annotated VQA instances. To facilitate fine-grained robustness evaluation, we further introduce MVI-Sensitivity, a novel metric that characterizes LVLM robustness at a granular level. Empirical results across 18 state-of-the-art LVLMs uncover pronounced vulnerabilities to misleading visual inputs, and our in-depth analyses on MVI-Bench provide actionable insights that can guide the development of more reliable and robust LVLMs. The benchmark and codebase can be accessed at https://github.com/chenyil6/MVI-Bench.
Abstract:3D GAN inversion projects a single image into the latent space of a pre-trained 3D GAN to achieve single-shot novel view synthesis, which requires visible regions with high fidelity and occluded regions with realism and multi-view consistency. However, existing methods focus on the reconstruction of visible regions, while the generation of occluded regions relies only on the generative prior of 3D GAN. As a result, the generated occluded regions often exhibit poor quality due to the information loss caused by the low bit-rate latent code. To address this, we introduce the warping-and-inpainting strategy to incorporate image inpainting into 3D GAN inversion and propose a novel 3D GAN inversion method, WarpGAN. Specifically, we first employ a 3D GAN inversion encoder to project the single-view image into a latent code that serves as the input to 3D GAN. Then, we perform warping to a novel view using the depth map generated by 3D GAN. Finally, we develop a novel SVINet, which leverages the symmetry prior and multi-view image correspondence w.r.t. the same latent code to perform inpainting of occluded regions in the warped image. Quantitative and qualitative experiments demonstrate that our method consistently outperforms several state-of-the-art methods.