Abstract:Recent works in 3D multimodal learning have made remarkable progress. However, typically 3D multimodal models are only capable of handling point clouds. Compared to the emerging 3D representation technique, 3D Gaussian Splatting (3DGS), the spatially sparse point cloud cannot depict the texture information of 3D objects, resulting in inferior reconstruction capabilities. This limitation constrains the potential of point cloud-based 3D multimodal representation learning. In this paper, we present CLIP-GS, a novel multimodal representation learning framework grounded in 3DGS. We introduce the GS Tokenizer to generate serialized gaussian tokens, which are then processed through transformer layers pre-initialized with weights from point cloud models, resulting in the 3DGS embeddings. CLIP-GS leverages contrastive loss between 3DGS and the visual-text embeddings of CLIP, and we introduce an image voting loss to guide the directionality and convergence of gradient optimization. Furthermore, we develop an efficient way to generate triplets of 3DGS, images, and text, facilitating CLIP-GS in learning unified multimodal representations. Leveraging the well-aligned multimodal representations, CLIP-GS demonstrates versatility and outperforms point cloud-based models on various 3D tasks, including multimodal retrieval, zero-shot, and few-shot classification.
Abstract:Recent developments in 3D vision have enabled successful progress in inferring neural fluid fields and realistic rendering of fluid dynamics. However, these methods require real-world flow captures, which demand dense video sequences and specialized lab setups, making the process costly and challenging. Scientific machine learning (SciML) foundation models, which are pretrained on extensive simulations of partial differential equations (PDEs), encode rich multiphysics knowledge and thus provide promising sources of domain priors for inferring fluid fields. Nevertheless, their potential to advance real-world vision problems remains largely underexplored, raising questions about the transferability and practical utility of these foundation models. In this work, we demonstrate that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization. At the core of our method is leveraging the strong forecasting capabilities and meaningful representations of SciML foundation models. We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model. Our method demonstrates significant improvements in both quantitative metrics and visual quality, showcasing the practical applicability of SciML foundation models in real-world fluid dynamics.
Abstract:Transformer-based models have recently achieved outstanding performance in image matting. However, their application to high-resolution images remains challenging due to the quadratic complexity of global self-attention. To address this issue, we propose MEMatte, a \textbf{m}emory-\textbf{e}fficient \textbf{m}atting framework for processing high-resolution images. MEMatte incorporates a router before each global attention block, directing informative tokens to the global attention while routing other tokens to a Lightweight Token Refinement Module (LTRM). Specifically, the router employs a local-global strategy to predict the routing probability of each token, and the LTRM utilizes efficient modules to simulate global attention. Additionally, we introduce a Batch-constrained Adaptive Token Routing (BATR) mechanism, which allows each router to dynamically route tokens based on image content and the stages of attention block in the network. Furthermore, we construct an ultra high-resolution image matting dataset, UHR-395, comprising 35,500 training images and 1,000 test images, with an average resolution of $4872\times6017$. This dataset is created by compositing 395 different alpha mattes across 11 categories onto various backgrounds, all with high-quality manual annotation. Extensive experiments demonstrate that MEMatte outperforms existing methods on both high-resolution and real-world datasets, significantly reducing memory usage by approximately 88% and latency by 50% on the Composition-1K benchmark. Our code is available at https://github.com/linyiheng123/MEMatte.
Abstract:The various post-processing methods for deep-learning-based models, such as quantification, pruning, and fine-tuning, play an increasingly important role in artificial intelligence technology, with pre-train large models as one of the main development directions. However, this popular series of post-processing behaviors targeting pre-training deep models has become a breeding ground for new adversarial security issues. In this study, we take the first step towards ``behavioral backdoor'' attack, which is defined as a behavior-triggered backdoor model training procedure, to reveal a new paradigm of backdoor attacks. In practice, we propose the first pipeline of implementing behavior backdoor, i.e., the Quantification Backdoor (QB) attack, upon exploiting model quantification method as the set trigger. Specifically, to adapt the optimization goal of behavior backdoor, we introduce the behavior-driven backdoor object optimizing method by a bi-target behavior backdoor training loss, thus we could guide the poisoned model optimization direction. To update the parameters across multiple models, we adopt the address-shared backdoor model training, thereby the gradient information could be utilized for multimodel collaborative optimization. Extensive experiments have been conducted on different models, datasets, and tasks, demonstrating the effectiveness of this novel backdoor attack and its potential application threats.
Abstract:Prohibited item detection is crucial for ensuring public safety, yet current X-ray image-based detection methods often lack comprehensive data-driven exploration. This paper introduces a novel data augmentation approach tailored for prohibited item detection, leveraging unique characteristics inherent to X-ray imagery. Our method is motivated by observations of physical properties including: 1) X-ray Transmission Imagery: Unlike reflected light images, transmitted X-ray pixels represent composite information from multiple materials along the imaging path. 2) Material-based Pseudo-coloring: Pseudo-color rendering in X-ray images correlates directly with material properties, aiding in material distinction. Building on a novel perspective from physical properties, we propose a simple yet effective X-ray image augmentation technique, Background Mixup (BGM), for prohibited item detection in security screening contexts. The essence is the rich background simulation of X-ray images to induce the model to increase its attention to the foreground. The approach introduces 1) contour information of baggage and 2) variation of material information into the original image by Mixup at patch level. Background Mixup is plug-and-play, parameter-free, highly generalizable and provides an effective solution to the limitations of classical visual augmentations in non-reflected light imagery. When implemented with different high-performance detectors, our augmentation method consistently boosts performance across diverse X-ray datasets from various devices and environments. Extensive experimental results demonstrate that our approach surpasses strong baselines while maintaining similar training resources.
Abstract:Advances in CLIP and large multimodal models (LMMs) have enabled open-vocabulary and free-text segmentation, yet existing models still require predefined category prompts, limiting free-form category self-generation. Most segmentation LMMs also remain confined to sparse predictions, restricting their applicability in open-set environments. In contrast, we propose ROSE, a Revolutionary Open-set dense SEgmentation LMM, which enables dense mask prediction and open-category generation through patch-wise perception. Our method treats each image patch as an independent region of interest candidate, enabling the model to predict both dense and sparse masks simultaneously. Additionally, a newly designed instruction-response paradigm takes full advantage of the generation and generalization capabilities of LMMs, achieving category prediction independent of closed-set constraints or predefined categories. To further enhance mask detail and category precision, we introduce a conversation-based refinement paradigm, integrating the prediction result from previous step with textual prompt for revision. Extensive experiments demonstrate that ROSE achieves competitive performance across various segmentation tasks in a unified framework. Code will be released.
Abstract:The detection of prohibited items in X-ray security inspections is vital for ensuring public safety. However, the long-tail distribution of item categories, where certain prohibited items are far less common, poses a big challenge for detection models, as rare categories often lack sufficient training data. Existing methods struggle to classify these rare items accurately due to this imbalance. In this paper, we propose a Dual-level Boost Network (DBNet) specifically designed to overcome these challenges in X-ray security screening. Our approach introduces two key innovations: (1) a specific data augmentation strategy employing Poisson blending, inspired by the characteristics of X-ray images, to generate realistic synthetic instances of rare items which can effectively mitigate data imbalance; and (2) a context-aware feature enhancement module that captures the spatial and semantic interactions between objects and their surroundings, enhancing classification accuracy for underrepresented categories. Extensive experimental results demonstrate that DBNet improves detection performance for tail categories, outperforming sota methods in X-ray security inspection scenarios by a large margin 17.2%, thereby ensuring enhanced public safety.
Abstract:To detect prohibited items in challenging categories, human inspectors typically rely on images from two distinct views (vertical and side). Can AI detect prohibited items from dual-view X-ray images in the same way humans do? Existing X-ray datasets often suffer from limitations, such as single-view imaging or insufficient sample diversity. To address these gaps, we introduce the Large-scale Dual-view X-ray (LDXray), which consists of 353,646 instances across 12 categories, providing a diverse and comprehensive resource for training and evaluating models. To emulate human intelligence in dual-view detection, we propose the Auxiliary-view Enhanced Network (AENet), a novel detection framework that leverages both the main and auxiliary views of the same object. The main-view pipeline focuses on detecting common categories, while the auxiliary-view pipeline handles more challenging categories using ``expert models" learned from the main view. Extensive experiments on the LDXray dataset demonstrate that the dual-view mechanism significantly enhances detection performance, e.g., achieving improvements of up to 24.7% for the challenging category of umbrellas. Furthermore, our results show that AENet exhibits strong generalization across seven different detection models for X-ray Inspection
Abstract:Adversarial audio attacks pose a significant threat to the growing use of large language models (LLMs) in voice-based human-machine interactions. While existing research has primarily focused on model-specific adversarial methods, real-world applications demand a more generalizable and universal approach to audio adversarial attacks. In this paper, we introduce the Chat-Audio Attacks (CAA) benchmark including four distinct types of audio attacks, which aims to explore the the vulnerabilities of LLMs to these audio attacks in conversational scenarios. To evaluate the robustness of LLMs, we propose three evaluation strategies: Standard Evaluation, utilizing traditional metrics to quantify model performance under attacks; GPT-4o-Based Evaluation, which simulates real-world conversational complexities; and Human Evaluation, offering insights into user perception and trust. We evaluate six state-of-the-art LLMs with voice interaction capabilities, including Gemini-1.5-Pro, GPT-4o, and others, using three distinct evaluation methods on the CAA benchmark. Our comprehensive analysis reveals the impact of four types of audio attacks on the performance of these models, demonstrating that GPT-4o exhibits the highest level of resilience.
Abstract:Current Semi-Supervised Object Detection (SSOD) methods enhance detector performance by leveraging large amounts of unlabeled data, assuming that both labeled and unlabeled data share the same label space. However, in open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes. Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes. To alleviate this issue, we propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector). Specifically, we introduce a feature-level clustering method using contrastive loss to clarify vector boundaries in the feature space and highlight class differences. Additionally, by optimizing the logits-level uncertainty classification loss, the model enhances its ability to effectively distinguish between ID and OOD classes. Extensive experiments demonstrate that our method achieves state-of-the-art performance compared to existing methods.