Abstract:Hyperspectral salient object detection (HSOD) aims to extract targets or regions with significantly different spectra from hyperspectral images. While existing deep learning-based methods can achieve good detection results, they generally necessitate pixel-level annotations, which are notably challenging to acquire for hyperspectral images. To address this issue, we introduce point supervision into HSOD, and incorporate Spectral Saliency, derived from conventional HSOD methods, as a pivotal spectral representation within the framework. This integration leads to the development of a novel Spectrum-oriented Point-supervised Saliency Detector (SPSD). Specifically, we propose a novel pipeline, specifically designed for HSIs, to generate pseudo-labels, effectively mitigating the performance decline associated with point supervision strategy. Additionally, Spectral Saliency is employed to counteract information loss during model supervision and saliency refinement, thereby maintaining the structural integrity and edge accuracy of the detected objects. Furthermore, we introduce a Spectrum-transformed Spatial Gate to focus more precisely on salient regions while reducing feature redundancy. We have carried out comprehensive experiments on both HSOD-BIT and HS-SOD datasets to validate the efficacy of our proposed method, using mean absolute error (MAE), E-measure, F-measure, Area Under Curve, and Cross Correlation as evaluation metrics. For instance, on the HSOD-BIT dataset, our SPSD achieves a MAE of 0.031 and an F-measure of 0.878. Thorough ablation studies have substantiated the effectiveness of each individual module and provided insights into the model's working mechanism. Further evaluations on RGB-thermal salient object detection datasets highlight the versatility of our approach.
Abstract:Recent developments in 3D vision have enabled successful progress in inferring neural fluid fields and realistic rendering of fluid dynamics. However, these methods require real-world flow captures, which demand dense video sequences and specialized lab setups, making the process costly and challenging. Scientific machine learning (SciML) foundation models, which are pretrained on extensive simulations of partial differential equations (PDEs), encode rich multiphysics knowledge and thus provide promising sources of domain priors for inferring fluid fields. Nevertheless, their potential to advance real-world vision problems remains largely underexplored, raising questions about the transferability and practical utility of these foundation models. In this work, we demonstrate that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization. At the core of our method is leveraging the strong forecasting capabilities and meaningful representations of SciML foundation models. We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model. Our method demonstrates significant improvements in both quantitative metrics and visual quality, showcasing the practical applicability of SciML foundation models in real-world fluid dynamics.
Abstract:To mitigate societal biases implicitly encoded in recent successful pretrained language models, a diverse array of approaches have been proposed to encourage model fairness, focusing on prompting, data augmentation, regularized fine-tuning, and more. Despite the development, it is nontrivial to reach a principled understanding of fairness and an effective algorithm that can consistently debias language models. In this work, by rigorous evaluations of Neural Collapse -- a learning phenomenon happen in last-layer representations and classifiers in deep networks -- on fairness-related words, we find that debiased language models exhibit collapsed alignment between token representations and word embeddings. More importantly, this observation inspires us to design a principled fine-tuning method that can effectively improve fairness in a wide range of debiasing methods, while still preserving the performance of language models on standard natural language understanding tasks. We attach our code at https://anonymous.4open.science/r/Fairness_NC-457E .
Abstract:Recent success of pre-trained foundation vision-language models makes Open-Vocabulary Segmentation (OVS) possible. Despite the promising performance, this approach introduces heavy computational overheads for two challenges: 1) large model sizes of the backbone; 2) expensive costs during the fine-tuning. These challenges hinder this OVS strategy from being widely applicable and affordable in real-world scenarios. Although traditional methods such as model compression and efficient fine-tuning can address these challenges, they often rely on heuristics. This means that their solutions cannot be easily transferred and necessitate re-training on different models, which comes at a cost. In the context of efficient OVS, we target achieving performance that is comparable to or even better than prior OVS works based on large vision-language foundation models, by utilizing smaller models that incur lower training costs. The core strategy is to make our efficiency principled and thus seamlessly transferable from one OVS framework to others without further customization. Comprehensive experiments on diverse OVS benchmarks demonstrate our superior trade-off between segmentation accuracy and computation costs over previous works. Our code is available on https://github.com/Xujxyang/OpenTrans
Abstract:Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications, particularly in intricate scenarios where conventional RGB-based approaches fall short. Despite the considerable progress in HSOD method advancements, two critical challenges require immediate attention. Firstly, existing hyperspectral data dimension reduction techniques incur a loss of spectral information, which adversely affects detection accuracy. Secondly, previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process. To address these challenges, we propose a novel approach termed the Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral Encoding process and a Mixed Spectral-Spatial Transformer (MSST) feature extraction network. The encoding process utilizes knowledge distillation to construct a lightweight autoencoder for dimension reduction, striking a balance between robust encoding capabilities and low computational costs. The MSST extracts spectral-spatial features through multiple attention head groups, collaboratively enhancing its resistance to intricate scenarios. Moreover, we have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field and meet the fundamental data requirements of deep network training. Extensive experiments demonstrate that our proposed DMSSN achieves state-of-the-art performance on multiple datasets. We will soon make the code and dataset publicly available on https://github.com/anonymous0519/HSOD-BIT.