Abstract:The rapid development of large language models (LLMs) has transformed many industries, including healthcare. However, previous medical LLMs have largely focused on leveraging general medical knowledge to provide responses, without accounting for patient variability and lacking true personalization at the individual level. To address this, we propose a novel method called personalized medical language model (PMLM), which explores and optimizes personalized LLMs through recommendation systems and reinforcement learning (RL). Specifically, by utilizing self-informed and peer-informed personalization, PMLM captures changes in behaviors and preferences to design initial personalized prompts tailored to individual needs. We further refine these initial personalized prompts through RL, ultimately enhancing the precision of LLM guidance. Notably, the personalized prompt are hard prompt, which grants PMLM high adaptability and reusability, allowing it to directly leverage high-quality proprietary LLMs. We evaluate PMLM using real-world obstetrics and gynecology data, and the experimental results demonstrate that PMLM achieves personalized responses, and it provides more refined and individualized services, offering a potential way for personalized medical LLMs.
Abstract:Large language models (LLMs) have excelled in various natural language processing tasks, but challenges in interpretability and trustworthiness persist, limiting their use in high-stakes fields. Causal discovery offers a promising approach to improve transparency and reliability. However, current evaluations are often one-sided and lack assessments focused on interpretability performance. Additionally, these evaluations rely on synthetic data and lack comprehensive assessments of real-world datasets. These lead to promising methods potentially being overlooked. To address these issues, we propose a flexible evaluation framework with metrics for evaluating differences in causal structures and causal effects, which are crucial attributes that help improve the interpretability of LLMs. We introduce the Open Causal Discovery Benchmark (OCDB), based on real data, to promote fair comparisons and drive optimization of algorithms. Additionally, our new metrics account for undirected edges, enabling fair comparisons between Directed Acyclic Graphs (DAGs) and Completed Partially Directed Acyclic Graphs (CPDAGs). Experimental results show significant shortcomings in existing algorithms' generalization capabilities on real data, highlighting the potential for performance improvement and the importance of our framework in advancing causal discovery techniques.
Abstract:Despite the remarkable capabilities demonstrated by Graph Neural Networks (GNNs) in graph-related tasks, recent research has revealed the fairness vulnerabilities in GNNs when facing malicious adversarial attacks. However, all existing fairness attacks require manipulating the connectivity between existing nodes, which may be prohibited in reality. To this end, we introduce a Node Injection-based Fairness Attack (NIFA), exploring the vulnerabilities of GNN fairness in such a more realistic setting. In detail, NIFA first designs two insightful principles for node injection operations, namely the uncertainty-maximization principle and homophily-increase principle, and then optimizes injected nodes' feature matrix to further ensure the effectiveness of fairness attacks. Comprehensive experiments on three real-world datasets consistently demonstrate that NIFA can significantly undermine the fairness of mainstream GNNs, even including fairness-aware GNNs, by injecting merely 1% of nodes. We sincerely hope that our work can stimulate increasing attention from researchers on the vulnerability of GNN fairness, and encourage the development of corresponding defense mechanisms.
Abstract:Previous studies on music style transfer have mainly focused on one-to-one style conversion, which is relatively limited. When considering the conversion between multiple styles, previous methods required designing multiple modes to disentangle the complex style of the music, resulting in large computational costs and slow audio generation. The existing music style transfer methods generate spectrograms with artifacts, leading to significant noise in the generated audio. To address these issues, this study proposes a music style transfer framework based on diffusion models (DM) and uses spectrogram-based methods to achieve multi-to-multi music style transfer. The GuideDiff method is used to restore spectrograms to high-fidelity audio, accelerating audio generation speed and reducing noise in the generated audio. Experimental results show that our model has good performance in multi-mode music style transfer compared to the baseline and can generate high-quality audio in real-time on consumer-grade GPUs.
Abstract:Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources to train deep learning models. Neural network pruning techniques, such as dynamic pruning, could enhance model efficiency, but directly adopting them in FL still poses substantial challenges, including post-pruning performance degradation, high activation memory usage, etc. To address these challenges, we propose FedMef, a novel and memory-efficient federated dynamic pruning framework. FedMef comprises two key components. First, we introduce the budget-aware extrusion that maintains pruning efficiency while preserving post-pruning performance by salvaging crucial information from parameters marked for pruning within a given budget. Second, we propose scaled activation pruning to effectively reduce activation memory footprints, which is particularly beneficial for deploying FL to memory-limited devices. Extensive experiments demonstrate the effectiveness of our proposed FedMef. In particular, it achieves a significant reduction of 28.5% in memory footprint compared to state-of-the-art methods while obtaining superior accuracy.
Abstract:Evaluating and enhancing the general capabilities of large language models (LLMs) has been an important research topic. Graph is a common data structure in the real world, and understanding graph data is a crucial part for advancing general intelligence. To evaluate and enhance the graph understanding abilities of LLMs, in this paper, we propose a benchmark named GraphInstruct, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed reasoning steps. Based on GraphInstruct, we further construct GraphLM through efficient instruction-tuning, which shows prominent graph understanding capability. In order to enhance the LLM with graph reasoning capability as well, we propose a step mask training strategy, and construct a model named GraphLM+. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphLM and GraphLM+ over other LLMs. We look forward to more researchers exploring the potential of LLMs in the graph data mining domain through GraphInstruct. Our code for generating GraphInstruct is released publicly at: https://github.com/CGCL-codes/GraphInstruct.
Abstract:Large Language Models (LLMs) have greatly advanced the natural language processing paradigm. However, the high computational load and huge model sizes pose a grand challenge for deployment on edge devices. To this end, we propose APTQ (Attention-aware Post-Training Mixed-Precision Quantization) for LLMs, which considers not only the second-order information of each layer's weights, but also, for the first time, the nonlinear effect of attention outputs on the entire model. We leverage the Hessian trace as a sensitivity metric for mixed-precision quantization, ensuring an informed precision reduction that retains model performance. Experiments show APTQ surpasses previous quantization methods, achieving an average of 4 bit width a 5.22 perplexity nearly equivalent to full precision in the C4 dataset. In addition, APTQ attains state-of-the-art zero-shot accuracy of 68.24\% and 70.48\% at an average bitwidth of 3.8 in LLaMa-7B and LLaMa-13B, respectively, demonstrating its effectiveness to produce high-quality quantized LLMs.
Abstract:Controllable 3D indoor scene synthesis stands at the forefront of technological progress, offering various applications like gaming, film, and augmented/virtual reality. The capability to stylize and de-couple objects within these scenarios is a crucial factor, providing an advanced level of control throughout the editing process. This control extends not just to manipulating geometric attributes like translation and scaling but also includes managing appearances, such as stylization. Current methods for scene stylization are limited to applying styles to the entire scene, without the ability to separate and customize individual objects. Addressing the intricacies of this challenge, we introduce a unique pipeline designed for synthesis 3D indoor scenes. Our approach involves strategically placing objects within the scene, utilizing information from professionally designed bounding boxes. Significantly, our pipeline prioritizes maintaining style consistency across multiple objects within the scene, ensuring a cohesive and visually appealing result aligned with the desired aesthetic. The core strength of our pipeline lies in its ability to generate 3D scenes that are not only visually impressive but also exhibit features like photorealism, multi-view consistency, and diversity. These scenes are crafted in response to various natural language prompts, demonstrating the versatility and adaptability of our model.
Abstract:Machine learning makes multimedia data (e.g., images) more attractive, however, multimedia data is usually distributed and privacy sensitive. Multiple distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model without requiring to share their private samples with any third-party entities. In this paper, we show that FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack, in which a malicious client (i.e., adversary) can reconstruct samples with the same distribution as the training samples from other clients (i.e., victims). Since a benign client's data can be leaked to the adversary, this attack brings the risk of local data leakage for clients in many security-critical FL applications. Thus, we propose Fed-EDKD (i.e., Federated Ensemble Data-free Knowledge Distillation) technique to improve the current popular FL schemes to resist C-GANs attack. In Fed-EDKD, each client submits a local model to the server for obtaining an ensemble global model. Then, to avoid model expansion, Fed-EDKD adopts data-free knowledge distillation techniques to transfer knowledge from the ensemble global model to a compressed model. By this way, Fed-EDKD reduces the adversary's control capability over the global model, so Fed-EDKD can effectively mitigate C-GANs attack. Finally, the experimental results demonstrate that Fed-EDKD significantly mitigates C-GANs attack while only incurring a slight accuracy degradation of FL.
Abstract:Semantic segmentation of multichannel images is a fundamental task for many applications. Selecting an appropriate channel combination from the original multichannel image can improve the accuracy of semantic segmentation and reduce the cost of data storage, processing and future acquisition. Existing channel selection methods typically use a reasonable selection procedure to determine a desirable channel combination, and then train a semantic segmentation network using that combination. In this study, the concept of pruning from a supernet is used for the first time to integrate the selection of channel combination and the training of a semantic segmentation network. Based on this concept, a One-Shot Task-Adaptive (OSTA) channel selection method is proposed for the semantic segmentation of multichannel images. OSTA has three stages, namely the supernet training stage, the pruning stage and the fine-tuning stage. The outcomes of six groups of experiments (L7Irish3C, L7Irish2C, L8Biome3C, L8Biome2C, RIT-18 and Semantic3D) demonstrated the effectiveness and efficiency of OSTA. OSTA achieved the highest segmentation accuracies in all tests (62.49% (mIoU), 75.40% (mIoU), 68.38% (mIoU), 87.63% (mIoU), 66.53% (mA) and 70.86% (mIoU), respectively). It even exceeded the highest accuracies of exhaustive tests (61.54% (mIoU), 74.91% (mIoU), 67.94% (mIoU), 87.32% (mIoU), 65.32% (mA) and 70.27% (mIoU), respectively), where all possible channel combinations were tested. All of this can be accomplished within a predictable and relatively efficient timeframe, ranging from 101.71% to 298.1% times the time required to train the segmentation network alone. In addition, there were interesting findings that were deemed valuable for several fields.