Celine
Abstract:In Sequential Recommendation Systems (SRSs), Transformer models show remarkable performance but face computation cost challenges when modeling long-term user behavior sequences due to the quadratic complexity of the dot-product attention mechanism. By approximating the dot-product attention, linear attention provides an efficient option with linear complexity. However, existing linear attention methods face two limitations: 1) they often use learnable position encodings, which incur extra computational costs in long-term sequence scenarios, and 2) they may not consider the user's fine-grained local preferences and confuse these with the actual change of long-term interests. To remedy these drawbacks, we propose a long-term sequential Recommendation model with Gated Rotary Enhanced Linear Attention (RecGRELA). Specifically, we first propose a Rotary-Enhanced Linear Attention (RELA) module to model long-range dependency within the user's historical information using rotary position encodings. We then introduce a local short operation to incorporate local preferences and demonstrate the theoretical insight. We further introduce a SiLU-based Gated mechanism for RELA (GRELA) to help the model determine whether a user's behavior indicates local interest or a genuine shift in long-term preferences. Experimental results on four public datasets demonstrate that our RecGRELA achieves state-of-the-art performance compared to existing SRSs while maintaining low memory overhead.
Abstract:In recent years, complexity compression of neural network (NN)-based speech enhancement (SE) models has gradually attracted the attention of researchers, especially in scenarios with limited hardware resources or strict latency requirements. The main difficulties and challenges lie in achieving a balance between complexity and performance according to the characteristics of the task. In this paper, we propose an intra-inter set knowledge distillation (KD) framework with time-frequency calibration (I$^2$S-TFCKD) for SE. Different from previous distillation strategies for SE, the proposed framework fully utilizes the time-frequency differential information of speech while promoting global knowledge flow. Firstly, we propose a multi-layer interactive distillation based on dual-stream time-frequency cross-calibration, which calculates the teacher-student similarity calibration weights in the time and frequency domains respectively and performs cross-weighting, thus enabling refined allocation of distillation contributions across different layers according to speech characteristics. Secondly, we construct a collaborative distillation paradigm for intra-set and inter-set correlations. Within a correlated set, multi-layer teacher-student features are pairwise matched for calibrated distillation. Subsequently, we generate representative features from each correlated set through residual fusion to form the fused feature set that enables inter-set knowledge interaction. The proposed distillation strategy is applied to the dual-path dilated convolutional recurrent network (DPDCRN) that ranked first in the SE track of the L3DAS23 challenge. Objective evaluations demonstrate that the proposed KD strategy consistently and effectively improves the performance of the low-complexity student model and outperforms other distillation schemes.
Abstract:Robotic task planning in real-world environments requires not only object recognition but also a nuanced understanding of spatial relationships between objects. We present a spatial-relationship-aware dataset of nearly 1,000 robot-acquired indoor images, annotated with object attributes, positions, and detailed spatial relationships. Captured using a Boston Dynamics Spot robot and labelled with a custom annotation tool, the dataset reflects complex scenarios with similar or identical objects and intricate spatial arrangements. We benchmark six state-of-the-art scene-graph generation models on this dataset, analysing their inference speed and relational accuracy. Our results highlight significant differences in model performance and demonstrate that integrating explicit spatial relationships into foundation models, such as ChatGPT 4o, substantially improves their ability to generate executable, spatially-aware plans for robotics. The dataset and annotation tool are publicly available at https://github.com/PengPaulWang/SpatialAwareRobotDataset, supporting further research in spatial reasoning for robotics.
Abstract:Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing, by identifying unexpected patterns that deviate from established norms in real-world data. Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest due to their ability to learn complex data distributions and generate high-fidelity samples, offering a robust framework for unsupervised AD. In this survey, we comprehensively review anomaly detection and generation with diffusion models (ADGDM), presenting a tutorial-style analysis of the theoretical foundations and practical implementations and spanning images, videos, time series, tabular, and multimodal data. Crucially, unlike existing surveys that often treat anomaly detection and generation as separate problems, we highlight their inherent synergistic relationship. We reveal how DMs enable a reinforcing cycle where generation techniques directly address the fundamental challenge of anomaly data scarcity, while detection methods provide critical feedback to improve generation fidelity and relevance, advancing both capabilities beyond their individual potential. A detailed taxonomy categorizes ADGDM methods based on anomaly scoring mechanisms, conditioning strategies, and architectural designs, analyzing their strengths and limitations. We final discuss key challenges including scalability and computational efficiency, and outline promising future directions such as efficient architectures, conditioning strategies, and integration with foundation models (e.g., visual-language models and large language models). By synthesizing recent advances and outlining open research questions, this survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
Abstract:This paper introduces MiniCPM4, a highly efficient large language model (LLM) designed explicitly for end-side devices. We achieve this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems. Specifically, in terms of model architecture, we propose InfLLM v2, a trainable sparse attention mechanism that accelerates both prefilling and decoding phases for long-context processing. Regarding training data, we propose UltraClean, an efficient and accurate pre-training data filtering and generation strategy, and UltraChat v2, a comprehensive supervised fine-tuning dataset. These datasets enable satisfactory model performance to be achieved using just 8 trillion training tokens. Regarding training algorithms, we propose ModelTunnel v2 for efficient pre-training strategy search, and improve existing post-training methods by introducing chunk-wise rollout for load-balanced reinforcement learning and data-efficient tenary LLM, BitCPM. Regarding inference systems, we propose CPM.cu that integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding. To meet diverse on-device requirements, MiniCPM4 is available in two versions, with 0.5B and 8B parameters, respectively. Sufficient evaluation results show that MiniCPM4 outperforms open-source models of similar size across multiple benchmarks, highlighting both its efficiency and effectiveness. Notably, MiniCPM4-8B demonstrates significant speed improvements over Qwen3-8B when processing long sequences. Through further adaptation, MiniCPM4 successfully powers diverse applications, including trustworthy survey generation and tool use with model context protocol, clearly showcasing its broad usability.
Abstract:The widespread deployment of large models in resource-constrained environments has underscored the need for efficient transmission of intermediate feature representations. In this context, feature coding, which compresses features into compact bitstreams, becomes a critical component for scenarios involving feature transmission, storage, and reuse. However, this compression process introduces inherent semantic degradation that is notoriously difficult to quantify with traditional metrics. To address this, this paper introduces the research problem of Compressed Feature Quality Assessment (CFQA), which seeks to evaluate the semantic fidelity of compressed features. To advance CFQA research, we propose the first benchmark dataset, comprising 300 original features and 12000 compressed features derived from three vision tasks and four feature codecs. Task-specific performance drops are provided as true semantic distortion for the evaluation of CFQA metrics. We assess the performance of three widely used metrics (MSE, cosine similarity, and Centered Kernel Alignment) in capturing semantic degradation. The results underscore the representativeness of the dataset and highlight the need for more refined metrics capable of addressing the nuances of semantic distortion in compressed features. To facilitate the ongoing development of CFQA research, we release the dataset and all accompanying source code at \href{https://github.com/chansongoal/Compressed-Feature-Quality-Assessment}{https://github.com/chansongoal/Compressed-Feature-Quality-Assessment}. This contribution aims to advance the field and provide a foundational resource for the community to explore CFQA.
Abstract:Visual parsing of images and videos is critical for a wide range of real-world applications. However, progress in this field is constrained by limitations of existing datasets: (1) insufficient annotation granularity, which impedes fine-grained scene understanding and high-level reasoning; (2) limited coverage of domains, particularly a lack of datasets tailored for educational scenarios; and (3) lack of explicit procedural guidance, with minimal logical rules and insufficient representation of structured task process. To address these gaps, we introduce PhysLab, the first video dataset that captures students conducting complex physics experiments. The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns. PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks, including action recognition, object detection, HOI analysis, etc. We establish strong baselines and perform extensive evaluations to highlight key challenges in the parsing of procedural educational videos. We expect PhysLab to serve as a valuable resource for advancing fine-grained visual parsing, facilitating intelligent classroom systems, and fostering closer integration between computer vision and educational technologies. The dataset and the evaluation toolkit are publicly available at https://github.com/ZMH-SDUST/PhysLab.
Abstract:The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
Abstract:Improving large language models (LLMs) with self-generated data has demonstrated success in tasks such as mathematical reasoning and code generation. Yet, no exploration has been made on table question answering (TQA), where a system answers questions based on tabular data. Addressing this gap is crucial for TQA, as effective self-improvement can boost performance without requiring costly or manually annotated data. In this work, we propose PPT, a Process-based Preference learning framework for TQA. It decomposes reasoning chains into discrete states, assigns scores to each state, and samples contrastive steps for preference learning. Experimental results show that PPT effectively improves TQA models by up to 5% on in-domain datasets and 2.4% on out-of-domain datasets, with only 8,000 preference pairs. Furthermore, the resulting models achieve competitive results compared to more complex and larger state-of-the-art TQA systems, while being five times more efficient during inference.
Abstract:In table question answering (TQA), tables are encoded as either texts or images. Prior work suggests that passing images of tables to multi-modal large language models (MLLMs) performs comparably to or even better than using textual input with large language models (LLMs). However, the lack of controlled setups limits fine-grained distinctions between these approaches. In this paper, we conduct the first controlled study on the effectiveness of several combinations of table representations and models from two perspectives: question complexity and table size. We build a new benchmark based on existing TQA datasets. In a systematic analysis of seven pairs of MLLMs and LLMs, we find that the best combination of table representation and model varies across setups. We propose FRES, a method selecting table representations dynamically, and observe a 10% average performance improvement compared to using both representations indiscriminately.