School of Software Engineering, Xian Jiaotong University
Abstract:Rotary Position Embedding (RoPE) has shown strong performance in text-based Large Language Models (LLMs), but extending it to video remains a challenge due to the intricate spatiotemporal structure of video frames. Existing adaptations, such as RoPE-3D, attempt to encode spatial and temporal dimensions separately but suffer from two major limitations: positional bias in attention distribution and disruptions in video-text transitions. To overcome these issues, we propose Video Rotary Position Embedding (VRoPE), a novel positional encoding method tailored for Video-LLMs. Our approach restructures positional indices to preserve spatial coherence and ensure a smooth transition between video and text tokens. Additionally, we introduce a more balanced encoding strategy that mitigates attention biases, ensuring a more uniform distribution of spatial focus. Extensive experiments on Vicuna and Qwen2 across different model scales demonstrate that VRoPE consistently outperforms previous RoPE variants, achieving significant improvements in video understanding, temporal reasoning, and retrieval tasks. Code will be available at https://github.com/johncaged/VRoPE
Abstract:Improving the safety and reliability of large language models (LLMs) is a crucial aspect of realizing trustworthy AI systems. Although alignment methods aim to suppress harmful content generation, LLMs are often still vulnerable to jailbreaking attacks that employ adversarial inputs that subvert alignment and induce harmful outputs. We propose the Randomized Embedding Smoothing and Token Aggregation (RESTA) defense, which adds random noise to the embedding vectors and performs aggregation during the generation of each output token, with the aim of better preserving semantic information. Our experiments demonstrate that our approach achieves superior robustness versus utility tradeoffs compared to the baseline defenses.
Abstract:Dynamic graph representation learning plays a crucial role in understanding evolving behaviors. However, existing methods often struggle with flexibility, adaptability, and the preservation of temporal and structural dynamics. To address these issues, we propose Community-aware Temporal Walks (CTWalks), a novel framework for representation learning on continuous-time dynamic graphs. CTWalks integrates three key components: a community-based parameter-free temporal walk sampling mechanism, an anonymization strategy enriched with community labels, and an encoding process that leverages continuous temporal dynamics modeled via ordinary differential equations (ODEs). This design enables precise modeling of both intra- and inter-community interactions, offering a fine-grained representation of evolving temporal patterns in continuous-time dynamic graphs. CTWalks theoretically overcomes locality bias in walks and establishes its connection to matrix factorization. Experiments on benchmark datasets demonstrate that CTWalks outperforms established methods in temporal link prediction tasks, achieving higher accuracy while maintaining robustness.
Abstract:Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we systematically review recent advances in DMAD research and investigate their capabilities. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.
Abstract:Large Language Models (LLMs) have shown tremendous promise in automated software engineering. In this paper, we investigate the opportunities of LLMs for automatic regression test generation for programs that take highly structured, human-readable inputs, such as XML parsers or JavaScript interpreters. Concretely, we explore the following regression test generation scenarios for such programs that have so far been difficult to test automatically in the absence of corresponding input grammars: $\bullet$ Bug finding. Given a code change (e.g., a commit or pull request), our LLM-based approach generates a test case with the objective of revealing any bugs that might be introduced if that change is applied. $\bullet$ Patch testing. Given a patch, our LLM-based approach generates a test case that fails before but passes after the patch. This test can be added to the regression test suite to catch similar bugs in the future. We implement Cleverest, a feedback-directed, zero-shot LLM-based regression test generation technique, and evaluate its effectiveness on 22 commits to three subject programs: Mujs, Libxml2, and Poppler. For programs using more human-readable file formats, like XML or JavaScript, we found Cleverest performed very well. It generated easy-to-understand bug-revealing or bug-reproduction test cases for the majority of commits in just under three minutes -- even when only the code diff or commit message (unless it was too vague) was given. For programs with more compact file formats, like PDF, as expected, it struggled to generate effective test cases. However, the LLM-supplied test cases are not very far from becoming effective (e.g., when used as a seed by a greybox fuzzer or as a starting point by the developer).
Abstract:Current fake image detectors trained on large synthetic image datasets perform satisfactorily on limited studied generative models. However, they suffer a notable performance decline over unseen models. Besides, collecting adequate training data from online generative models is often expensive or infeasible. To overcome these issues, we propose Few-Shot Detector (FSD), a novel AI-generated image detector which learns a specialized metric space to effectively distinguish unseen fake images by utilizing very few samples. Experiments show FSD achieves state-of-the-art performance by $+7.4\%$ average ACC on GenImage dataset. More importantly, our method is better capable of capturing the intra-category common features in unseen images without further training.
Abstract:Understanding and analyzing the spatial semantics and structure of forests is essential for accurate forest resource monitoring and ecosystem research. However, the lack of large-scale and annotated datasets has limited the widespread use of advanced intelligent techniques in this field. To address this challenge, a fully automated synthetic data generation and processing framework based on the concepts of Digital Cousins and Simulation-to-Reality (Sim2Real) is proposed, offering versatility and scalability to any size and platform. Using this process, we created the Boreal3D, the world's largest forest point cloud dataset. It includes 1000 highly realistic and structurally diverse forest plots across four different platforms, totaling 48,403 trees and over 35.3 billion points. Each point is labeled with semantic, instance, and viewpoint information, while each tree is described with structural parameters such as diameter, crown width, leaf area, and total volume. We designed and conducted extensive experiments to evaluate the potential of Boreal3D in advancing fine-grained 3D forest structure analysis in real-world applications. The results demonstrate that with certain strategies, models pre-trained on synthetic data can significantly improve performance when applied to real forest datasets. Especially, the findings reveal that fine-tuning with only 20% of real-world data enables the model to achieve performance comparable to models trained exclusively on entire real-world data, highlighting the value and potential of our proposed framework. The Boreal3D dataset, and more broadly, the synthetic data augmentation framework, is poised to become a critical resource for advancing research in large-scale 3D forest scene understanding and structural parameter estimation.
Abstract:Federated Learning (FL) mitigates privacy leakage in decentralized machine learning by allowing multiple clients to train collaboratively locally. However, dynamic mobile networks with high mobility, intermittent connectivity, and bandwidth limitation severely hinder model updates to the cloud server. Although previous studies have typically addressed user mobility issue through task reassignment or predictive modeling, frequent migrations may result in high communication overhead. Overcoming this obstacle involves not only dealing with resource constraints, but also finding ways to mitigate the challenges posed by user migrations. We therefore propose an intertemporal incentive framework, FedCross, which ensures the continuity of FL tasks by migrating interrupted training tasks to feasible mobile devices. Specifically, FedCross comprises two distinct stages. In Stage 1, we address the task allocation problem across regions under resource constraints by employing a multi-objective migration algorithm to quantify the optimal task receivers. Moreover, we adopt evolutionary game theory to capture the dynamic decision-making of users, forecasting the evolution of user proportions across different regions to mitigate frequent migrations. In Stage 2, we utilize a procurement auction mechanism to allocate rewards among base stations, ensuring that those providing high-quality models receive optimal compensation. This approach incentivizes sustained user participation, thereby ensuring the overall feasibility of FedCross. Finally, experimental results validate the theoretical soundness of FedCross and demonstrate its significant reduction in communication overhead.
Abstract:Animation has gained significant interest in the recent film and TV industry. Despite the success of advanced video generation models like Sora, Kling, and CogVideoX in generating natural videos, they lack the same effectiveness in handling animation videos. Evaluating animation video generation is also a great challenge due to its unique artist styles, violating the laws of physics and exaggerated motions. In this paper, we present a comprehensive system, AniSora, designed for animation video generation, which includes a data processing pipeline, a controllable generation model, and an evaluation dataset. Supported by the data processing pipeline with over 10M high-quality data, the generation model incorporates a spatiotemporal mask module to facilitate key animation production functions such as image-to-video generation, frame interpolation, and localized image-guided animation. We also collect an evaluation benchmark of 948 various animation videos, the evaluation on VBench and human double-blind test demonstrates consistency in character and motion, achieving state-of-the-art results in animation video generation. Our evaluation benchmark will be publicly available at https://github.com/bilibili/Index-anisora.
Abstract:Community structures are critical for understanding the mesoscopic organization of networks, bridging local and global patterns. While methods such as DeepWalk and node2vec capture local positional information through random walks, they fail to preserve community structures. Other approaches like modularized nonnegative matrix factorization and evolutionary algorithms address this gap but are computationally expensive and unsuitable for large-scale networks. To overcome these limitations, we propose Two Layer Walk (TLWalk), a novel graph embedding algorithm that incorporates hierarchical community structures. TLWalk balances intra- and inter-community relationships through a community-aware random walk mechanism without requiring additional parameters. Theoretical analysis demonstrates that TLWalk effectively mitigates locality bias. Experiments on benchmark datasets show that TLWalk outperforms state-of-the-art methods, achieving up to 3.2% accuracy gains for link prediction tasks. By encoding dense local and sparse global structures, TLWalk proves robust and scalable across diverse networks, offering an efficient solution for network analysis.