Dima
Abstract:Zero-shot, training-free, image-based text-to-video generation is an emerging area that aims to generate videos using existing image-based diffusion models. Current methods in this space require specific architectural changes to image generation models, which limit their adaptability and scalability. In contrast to such methods, we provide a model-agnostic approach. We use intersections in diffusion trajectories, working only with the latent values. We could not obtain localized frame-wise coherence and diversity using only the intersection of trajectories. Thus, we instead use a grid-based approach. An in-context trained LLM is used to generate coherent frame-wise prompts; another is used to identify differences between frames. Based on these, we obtain a CLIP-based attention mask that controls the timing of switching the prompts for each grid cell. Earlier switching results in higher variance, while later switching results in more coherence. Therefore, our approach can ensure appropriate control between coherence and variance for the frames. Our approach results in state-of-the-art performance while being more flexible when working with diverse image-generation models. The empirical analysis using quantitative metrics and user studies confirms our model's superior temporal consistency, visual fidelity and user satisfaction, thus providing a novel way to obtain training-free, image-based text-to-video generation.
Abstract:The use of AI in legal analysis and prediction (LegalAI) has gained widespread attention, with past research focusing on retrieval-based methods and fine-tuning large models. However, these approaches often require large datasets and underutilize the capabilities of modern large language models (LLMs). In this paper, inspired by the debate phase of real courtroom trials, we propose a novel legal judgment prediction model based on the Debate-Feedback architecture, which integrates LLM multi-agent debate and reliability evaluation models. Unlike traditional methods, our model achieves significant improvements in efficiency by minimizing the need for large historical datasets, thus offering a lightweight yet robust solution. Comparative experiments show that it outperforms several general-purpose and domain-specific legal models, offering a dynamic reasoning process and a promising direction for future LegalAI research.
Abstract:This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
Abstract:Learning-based denoising algorithms achieve state-of-the-art performance across various denoising tasks. However, training such models relies on access to large training datasets consisting of clean and noisy image pairs. On the other hand, in many imaging applications, such as microscopy, collecting ground truth images is often infeasible. To address this challenge, researchers have recently developed algorithms that can be trained without requiring access to ground truth data. However, training such models remains computationally challenging and still requires access to large noisy training samples. In this work, inspired by compression-based denoising and recent advances in neural compression, we propose a new compression-based denoising algorithm, which we name DeCompress, that i) does not require access to ground truth images, ii) does not require access to large training dataset - only a single noisy image is sufficient, iii) is robust to overfitting, and iv) achieves superior performance compared with zero-shot or unsupervised learning-based denoisers.
Abstract:We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
Abstract:Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Abstract:Temporal graph neural networks (TGNNs) have shown remarkable performance in temporal graph modeling. However, real-world temporal graphs often possess rich textual information, giving rise to temporal text-attributed graphs (TTAGs). Such combination of dynamic text semantics and evolving graph structures introduces heightened complexity. Existing TGNNs embed texts statically and rely heavily on encoding mechanisms that biasedly prioritize structural information, overlooking the temporal evolution of text semantics and the essential interplay between semantics and structures for synergistic reinforcement. To tackle these issues, we present \textbf{{Cross}}, a novel framework that seamlessly extends existing TGNNs for TTAG modeling. The key idea is to employ the advanced large language models (LLMs) to extract the dynamic semantics in text space and then generate expressive representations unifying both semantics and structures. Specifically, we propose a Temporal Semantics Extractor in the {Cross} framework, which empowers the LLM to offer the temporal semantic understanding of node's evolving contexts of textual neighborhoods, facilitating semantic dynamics. Subsequently, we introduce the Semantic-structural Co-encoder, which collaborates with the above Extractor for synthesizing illuminating representations by jointly considering both semantic and structural information while encouraging their mutual reinforcement. Extensive experimental results on four public datasets and one practical industrial dataset demonstrate {Cross}'s significant effectiveness and robustness.
Abstract:Simple as it seems, moving an object to another location within an image is, in fact, a challenging image-editing task that requires re-harmonizing the lighting, adjusting the pose based on perspective, accurately filling occluded regions, and ensuring coherent synchronization of shadows and reflections while maintaining the object identity. In this paper, we present ObjectMover, a generative model that can perform object movement in highly challenging scenes. Our key insight is that we model this task as a sequence-to-sequence problem and fine-tune a video generation model to leverage its knowledge of consistent object generation across video frames. We show that with this approach, our model is able to adjust to complex real-world scenarios, handling extreme lighting harmonization and object effect movement. As large-scale data for object movement are unavailable, we construct a data generation pipeline using a modern game engine to synthesize high-quality data pairs. We further propose a multi-task learning strategy that enables training on real-world video data to improve the model generalization. Through extensive experiments, we demonstrate that ObjectMover achieves outstanding results and adapts well to real-world scenarios.
Abstract:Recent diffusion model customization has shown impressive results in incorporating subject or style concepts with a handful of images. However, the modular composition of multiple concepts into a customized model, aimed to efficiently merge decentralized-trained concepts without influencing their identities, remains unresolved. Modular customization is essential for applications like concept stylization and multi-concept customization using concepts trained by different users. Existing post-training methods are only confined to a fixed set of concepts, and any different combinations require a new round of retraining. In contrast, instant merging methods often cause identity loss and interference of individual merged concepts and are usually limited to a small number of concepts. To address these issues, we propose BlockLoRA, an instant merging method designed to efficiently combine multiple concepts while accurately preserving individual concepts' identity. With a careful analysis of the underlying reason for interference, we develop the Randomized Output Erasure technique to minimize the interference of different customized models. Additionally, Blockwise LoRA Parameterization is proposed to reduce the identity loss during instant model merging. Extensive experiments validate the effectiveness of BlockLoRA, which can instantly merge 15 concepts of people, subjects, scenes, and styles with high fidelity.
Abstract:Recent advancements in Multimodal Large Language Models (MLLMs) have enabled their deployment on mobile devices. However, challenges persist in maintaining strong language capabilities and ensuring hardware compatibility, both of which are crucial for user experience and practical deployment efficiency. In our deployment process, we observe that existing MLLMs often face performance degradation on pure language tasks, and the current NPU platforms on smartphones do not support the MoE architecture, which is commonly used to preserve pure language capabilities during multimodal training. To address these issues, we systematically analyze methods to maintain pure language capabilities during the training of MLLMs, focusing on both training data and model architecture aspects. Based on these analyses, we propose GenieBlue, an efficient MLLM structural design that integrates both linguistic and multimodal capabilities for LLMs on mobile devices. GenieBlue freezes the original LLM parameters during MLLM training to maintain pure language capabilities. It acquires multimodal capabilities by duplicating specific transformer blocks for full fine-tuning and integrating lightweight LoRA modules. This approach preserves language capabilities while achieving comparable multimodal performance through extensive training. Deployed on smartphone NPUs, GenieBlue demonstrates efficiency and practicality for applications on mobile devices.