Abstract:Multiple object tracking (MOT) involves identifying multiple targets and assigning them corresponding IDs within a video sequence, where occlusions are often encountered. Recent methods address occlusions using appearance cues through online learning techniques to improve adaptivity or offline learning techniques to utilize temporal information from videos. However, most existing online learning-based MOT methods are unable to learn from all past tracking information to improve adaptivity on long-term occlusions while maintaining real-time tracking speed. On the other hand, temporal information-based offline learning methods maintain a long-term memory to store past tracking information, but this approach restricts them to use only local past information during tracking. To address these challenges, we propose a new MOT framework called the Feature Adaptive Continual-learning Tracker (FACT), which enables real-time tracking and feature learning for targets by utilizing all past tracking information. We demonstrate that the framework can be integrated with various state-of-the-art feature-based trackers, thereby improving their tracking ability. Specifically, we develop the feature adaptive continual-learning (FAC) module, a neural network that can be trained online to learn features adaptively using all past tracking information during tracking. Moreover, we also introduce a two-stage association module specifically designed for the proposed continual learning-based tracking. Extensive experiment results demonstrate that the proposed method achieves state-of-the-art online tracking performance on MOT17 and MOT20 benchmarks. The code will be released upon acceptance.
Abstract:Over the past years, Printed Mathematical Expression Recognition (PMER) has progressed rapidly. However, due to the insufficient context information captured by Convolutional Neural Networks, some mathematical symbols might be incorrectly recognized or missed. To tackle this problem, in this paper, a Dual Branch transformer-based Network (DBN) is proposed to learn both local and global context information for accurate PMER. In our DBN, local and global features are extracted simultaneously, and a Context Coupling Module (CCM) is developed to complement the features between the global and local contexts. CCM adopts an interactive manner so that the coupled context clues are highly correlated to each expression symbol. Additionally, we design a Dynamic Soft Target (DST) strategy to utilize the similarities among symbol categories for reasonable label generation. Our experimental results have demonstrated that DBN can accurately recognize mathematical expressions and has achieved state-of-the-art performance.
Abstract:Pedestrian attribute recognition (PAR) aims to predict the attributes of a target pedestrian in a surveillance system. Existing methods address the PAR problem by training a multi-label classifier with predefined attribute classes. However, it is impossible to exhaust all pedestrian attributes in the real world. To tackle this problem, we develop a novel pedestrian open-attribute recognition (POAR) framework. Our key idea is to formulate the POAR problem as an image-text search problem. We design a Transformer-based image encoder with a masking strategy. A set of attribute tokens are introduced to focus on specific pedestrian parts (e.g., head, upper body, lower body, feet, etc.) and encode corresponding attributes into visual embeddings. Each attribute category is described as a natural language sentence and encoded by the text encoder. Then, we compute the similarity between the visual and text embeddings of attributes to find the best attribute descriptions for the input images. Different from existing methods that learn a specific classifier for each attribute category, we model the pedestrian at a part-level and explore the searching method to handle the unseen attributes. Finally, a many-to-many contrastive (MTMC) loss with masked tokens is proposed to train the network since a pedestrian image can comprise multiple attributes. Extensive experiments have been conducted on benchmark PAR datasets with an open-attribute setting. The results verified the effectiveness of the proposed POAR method, which can form a strong baseline for the POAR task.
Abstract:Class-incremental learning (CIL) learns a classification model with training data of different classes arising progressively. Existing CIL either suffers from serious accuracy loss due to catastrophic forgetting, or invades data privacy by revisiting used exemplars. Inspired by linear learning formulations, we propose an analytic class-incremental learning (ACIL) with absolute memorization of past knowledge while avoiding breaching of data privacy (i.e., without storing historical data). The absolute memorization is demonstrated in the sense that class-incremental learning using ACIL given present data would give identical results to that from its joint-learning counterpart which consumes both present and historical samples. This equality is theoretically validated. Data privacy is ensured since no historical data are involved during the learning process. Empirical validations demonstrate ACIL's competitive accuracy performance with near-identical results for various incremental task settings (e.g., 5-50 phases). This also allows ACIL to outperform the state-of-the-art methods for large-phase scenarios (e.g., 25 and 50 phases).
Abstract:Recent attention-based image inpainting methods have made inspiring progress by modeling long-range dependencies within a single image. However, they tend to generate blurry contents since the correlation between each pixel pairs is always misled by ill-predicted features in holes. To handle this problem, we propose a novel region-aware attention (RA) module. By avoiding the directly calculating corralation between each pixel pair in a single samples and considering the correlation between different samples, the misleading of invalid information in holes can be avoided. Meanwhile, a learnable region dictionary (LRD) is introduced to store important information in the entire dataset, which not only simplifies correlation modeling, but also avoids information redundancy. By applying RA in our architecture, our methodscan generate semantically plausible results with realistic details. Extensive experiments on CelebA, Places2 and Paris StreetView datasets validate the superiority of our method compared with existing methods.
Abstract:Incremental learning methods can learn new classes continually by distilling knowledge from the last model (as a teacher model) to the current model (as a student model) in the sequentially learning process. However, these methods cannot work for Incremental Implicitly-Refined Classification (IIRC), an incremental learning extension where the incoming classes could have two granularity levels, a superclass label and a subclass label. This is because the previously learned superclass knowledge may be occupied by the subclass knowledge learned sequentially. To solve this problem, we propose a novel Multi-Teacher Knowledge Distillation (MTKD) strategy. To preserve the subclass knowledge, we use the last model as a general teacher to distill the previous knowledge for the student model. To preserve the superclass knowledge, we use the initial model as a superclass teacher to distill the superclass knowledge as the initial model contains abundant superclass knowledge. However, distilling knowledge from two teacher models could result in the student model making some redundant predictions. We further propose a post-processing mechanism, called as Top-k prediction restriction to reduce the redundant predictions. Our experimental results on IIRC-ImageNet120 and IIRC-CIFAR100 show that the proposed method can achieve better classification accuracy compared with existing state-of-the-art methods.
Abstract:Recent works in image inpainting have shown that structural information plays an important role in recovering visually pleasing results. In this paper, we propose an end-to-end architecture composed of two parallel UNet-based streams: a main stream (MS) and a structure stream (SS). With the assistance of SS, MS can produce plausible results with reasonable structures and realistic details. Specifically, MS reconstructs detailed images by inferring missing structures and textures simultaneously, and SS restores only missing structures by processing the hierarchical information from the encoder of MS. By interacting with SS in the training process, MS can be implicitly encouraged to exploit structural cues. In order to help SS focus on structures and prevent textures in MS from being affected, a gated unit is proposed to depress structure-irrelevant activations in the information flow between MS and SS. Furthermore, the multi-scale structure feature maps in SS are utilized to explicitly guide the structure-reasonable image reconstruction in the decoder of MS through the fusion block. Extensive experiments on CelebA, Paris StreetView and Places2 datasets demonstrate that our proposed method outperforms state-of-the-art methods.
Abstract:Compared to Hamming distance, weighted Hamming distance as a similarity measure between binary codes and the binary query point can provide superior accuracy in the search tasks. However, how to efficiently find $K$ binary codes in the dataset that have the smallest weighted Hamming distance with the query is still an open issue. In this paper, a non-exhaustive search framework is proposed to accelerate the search speed and guarantee the search accuracy on the binary codes in weighted Hamming space. By separating the binary codes into multiple disjoint substrings as the bucket indices, the search framework iteratively probes the buckets until the query's nearest neighbors are found. The framework consists of two modules, the search module and the decision module. The search module successively probes the buckets and takes the candidates according to a proper probing sequence generated by the proposed search algorithm. And the decision module decides whether the query's nearest neighbors are found or more buckets should be probed according to a designed decision criterion. The analysis and experiments indicate that the search framework can solve the nearest neighbor search problem in weighted Hamming space and is orders of magnitude faster than the linear scan baseline.
Abstract:Binary codes are widely used to represent the data due to their small storage and efficient computation. However, there exists an ambiguity problem that lots of binary codes share the same Hamming distance to a query. To alleviate the ambiguity problem, weighted binary codes assign different weights to each bit of binary codes and compare the binary codes by the weighted Hamming distance. Till now, performing the querying from the weighted binary codes efficiently is still an open issue. In this paper, we propose a new method to rank the weighted binary codes and return the nearest weighted binary codes of the query efficiently. In our method, based on the multi-index hash tables, two algorithms, the table bucket finding algorithm and the table merging algorithm, are proposed to select the nearest weighted binary codes of the query in a non-exhaustive and accurate way. The proposed algorithms are justified by proving their theoretic properties. The experiments on three large-scale datasets validate both the search efficiency and the search accuracy of our method. Especially for the number of weighted binary codes up to one billion, our method shows a great improvement of more than 1000 times faster than the linear scan.